US20090030284A1 - Overtube introducer for use in endoscopic bariatric surgery - Google Patents

Overtube introducer for use in endoscopic bariatric surgery Download PDF

Info

Publication number
US20090030284A1
US20090030284A1 US12/175,274 US17527408A US2009030284A1 US 20090030284 A1 US20090030284 A1 US 20090030284A1 US 17527408 A US17527408 A US 17527408A US 2009030284 A1 US2009030284 A1 US 2009030284A1
Authority
US
United States
Prior art keywords
tube
endogastric
overtube
retractor
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/175,274
Inventor
David Cole
Melanie L. Harris
Carlos E. Castro
Jason S. Stewart
Samuel T. Crews
Daniel J. Balbierz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Barosense Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barosense Inc filed Critical Barosense Inc
Priority to US12/175,274 priority Critical patent/US20090030284A1/en
Assigned to BAROSENSE, INC. reassignment BAROSENSE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIS, MELANIE, STEWART, JASON, BALBIERZ, DANIEL J., CASTRO, CARLOS, COLE, DAVID, CREWS, SAMUEL T.
Publication of US20090030284A1 publication Critical patent/US20090030284A1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAROSENSE, INC.
Priority to US13/964,890 priority patent/US9545249B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00078Insertion part of the endoscope body with stiffening means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes

Definitions

  • This application describes an overtube/introducer device that gives access to body cavities using natural orifices of the body (e.g., esophagus, anus, vagina) for a variety of therapeutic and/or diagnostic procedures.
  • the overtube/introducer enables the introduction of devices into the gastrointestinal tract of a patient via the mouth and esophagus.
  • Therapies to be carried out using the introducer can include procedures designed for the treatment of obesity.
  • the disclosed overtube provides in and out access to the targeted procedural site and protects the body tissue during the procedure from trauma.
  • the disclosed overtube is suitable for use in an exemplary procedure in which the geometry of the stomach is modified and implantable devices are deployed.
  • the procedure is preferably performed entirely through the naturally existing orifice of the mouth, without additional external incisions.
  • FIG. 1 shows the anatomy of the human head and stomach, with reference numerals identifying the following features:
  • the entire exemplary procedure is preferably performed under direct endoscopic visualization, obtained by inserting a flexible endoscope into the overtube prior to its introduction into the patient, though the procedure (or individual steps of the procedure) may also be performed without direct visualization.
  • the endoscope's distal tip may be inserted into a flexible Bougie that incorporates a central lumen allowing direct line-of-sight for the endoscope's illumination and visualization optics.
  • the endoscope with the installed Bougie may then be inserted into the overtube's central lumen until the Bougie protrudes just past the overtube's distal end. This provides a gentle leading edge that facilitates insertion of the Bougie, overtube and endoscope into the patient's esophagus.
  • the overtube may be inserted over a guide wire; the guidewire inserted under direct visualization using a standard endoscope.
  • a transition member is positioned between the inside diameter of the overtube and the outside diameter of the guidewire providing for a smooth transition.
  • This transition is preferably a long taper, and composed of a soft, flexible material such as silicone.
  • the overtube, endoscope and Bougie Once the overtube, endoscope and Bougie have reached the desired position within the esophagus, the endoscope and Bougie are withdrawn from the overtube, and the overtube is left in position. The overtube is now in a position to facilitate the introduction of other tools and devices needed to perform subsequent steps.
  • a special-purpose stapler is inserted which will be used to prepare sites within the stomach wall tissue that will serve as mounting points for implantable devices to be installed in later steps.
  • Staplers suitable for this procedure include those disclosed in the following U.S. Applications:
  • the leading distal tip of the stapler mechanism is covered with a compliant, bullet-shaped, Bougie end cap, and incorporates a side-looking window.
  • the smooth Bougie shape of the end cap facilitates introduction of the stapler into the overtube and past the distal end of the overtube into the patient's esophagus or stomach.
  • the side window allows stomach wall tissue to be drawn between the stapler jaws prior to the application of staples.
  • the stapler incorporates a passive flexible length which allows the device to bend freely between the user controls at the proximal end and the stapler mechanism at the distal end.
  • Insertion of the stapler is preferably performed under direct endoscopic visualization, with an endoscope positioned next to the stapler such that its camera optics are located slightly proximal of the stapler's distal end. In this way, the position of the stapler may be visualized at all times, relative to its position within the overtube, esophagus and stomach. However, insertion of the stapler may optionally be performed without using an endoscope for visualization.
  • the stapler With the stapler inserted into the stomach, it may then be positioned relative to the stomach wall near the lower esophageal sphincter as desired. In order to achieve the desired position and visualization, it may be necessary to withdraw or further insert the overtube, or to manipulate certain features of the overtube, in such a way that it advantageously alters the geometry of the tissue and/or the overtube's relative position.
  • suction is applied to draw stomach wall tissue into the stapler end cap's side-looking window. This positions the stomach wall tissue between the jaws of the stapler, which are then approximated via a physician-controlled actuator to clamp the tissue firmly in position.
  • the suction may be released, as it is no longer needed to retain the stomach tissue.
  • Staples are then deployed by means of a second physician-controlled actuator through the plication, or fold, of stomach tissue between the stapler's jaws to create circular rings about a central point.
  • a hole is created in the plication of stomach tissue at the center of the pattern of stapes simultaneous to the application of the staples.
  • the hole and surrounding circular array of staples create a secure and durable mounting point (e.g., for implantable devices), and will be used in later steps of the procedure.
  • the stapler For staplers that must be re-loaded prior to the creation of the next mounting point, the stapler is withdrawn from the overtube and the distal stapling mechanism is then reloaded. For self-reloading stapler mechanisms, this step is not required. If reloading is required and has been performed, the reloaded device, Bougie end cap and endoscope are reinserted into the overtube. The process of positioning the stapler mechanism within the stomach described above is repeated so that the next mounting point is identified and created. This process is repeated to produce one or more anchor points, but preferably four mounting points are created.
  • mounting points may be anywhere within the stomach, but they are preferably located at the 3, 6, 9 and 12 o'clock positions, a fixed distance away from the lower esophageal sphincter. If the mounting points are to be used as anchor points for a flow restrictor of the type used to restrict/obstruct passage of food from the esophagus into the stomach, the preferential distance of the mounting points is such that the position of the exit of a restrictor attached at the mounting points will be immediately adjacent the lower esophageal sphincter.
  • Exemplary restrictor devices include but are not limited to those disclosed in U.S. Pat. Nos. 6,675,809, 6,845,776, 7,097,665, and 7,146,984, U.S. application Ser. No. 10/345,666, filed Jan. 16, 2003, Attorney Docket No. BARO-300, and U.S. application Ser. No. ______, Endoscopic Implant System and Method, Attorney Docket BARO-2010, filed Jul. 17, 2008.
  • the stapler is withdrawn.
  • highly compliant anchors are installed through the hole at the center of each of the mounting points.
  • the anchors have a rivet-like shape with large retaining heads on either end.
  • the anchors are intended to be installed in the holes at the center of the mounting points, remain in position indefinitely or until removed, and be easily removable.
  • the anchors are configured such that they may be grasped and pulled from one end (herein referred to as the “leading end”), and the resulting tension causes the leading end retaining head to change profile so that it may be drawn through the hole in a mounting point.
  • the other end of the anchor (herein referred to as the “following end”) is designed so that tension resulting from drawing it through the mounting hole does not result in a change to its profile, so it cannot be drawn through the mounting hole.
  • Anchors of this type are described in U.S. application Ser. No. ______, Endoscopic Implant System and Method, Attorney Docket BARO-2010, filed Jul. 17, 2008
  • Anchors are positioned in each of the mounting holes by means of graspers or similar instruments, which pull them, leading end first, through the mounting holes. Once the anchors are installed, the instruments required to insert them are withdrawn from the overtube.
  • a restrictor is inserted into the stomach via the overtube.
  • the restrictor is attached to the anchors, and will remain in the stomach after the procedure for an indefinite period of time, such as the point in time when a physician determines the patient has achieved sufficient weight loss.
  • the restrictor is attached to the anchors by drawing the leading end of the anchors through mounting holes in the restrictor using graspers or other instruments, as appropriate.
  • the procedure is complete and the overtube may be withdrawn from the patient, along with any tools remaining in the lumen it defines (e.g., endoscope, graspers, etc.).
  • tools remaining in the lumen it defines e.g., endoscope, graspers, etc.
  • the overtube Upon completion of the procedure, the overtube has enabled the deployment of a restrictor, which is attached to anchors that have been implanted into stapled plications in the stomach wall.
  • the passage of food into the stomach from the esophagus has been restricted, altering the patient's feelings of satiety and eating habits.
  • FIG. 1 schematically illustrates certain aspects of the anatomy of the head and stomach
  • FIG. 2 is a side elevation view of an embodiment of an overtube
  • FIG. 3 is a side elevation view of a distal portion of the overtube of FIG. 2 .
  • FIG. 4A is a side elevation view of an alternate portion of an overtube, showing expansion of the distal portion in response to introduction of an instrument into the overtube.
  • FIG. 4B illustrates a reinforcing ring suitable for use in the deformable overtube of FIG. 4A and shows degrees of deformation of the reinforcement ring in response to instrument advancement through the overtube.
  • FIG. 4C is a cross-section view of the tube of FIG. 4A , shown as transparent to permit viewing of an alternate reinforcement. The figure shows deformation of the reinforcement ring in response to instrument advancement through the overtube.
  • FIG. 4D is similar to FIG. 4C and shows yet another alternate reinforcement.
  • FIG. 5A-5C are a sequence of steps illustrating one embodiment of an overtube manufacturing technique
  • FIG. 6A shows three cross-section views of arrangements of alternating thermoplastic elements with and without wire cores that may be used to form a wall of an overtube in the method of FIGS. 5A-5C .
  • FIG. 6B is a longitudinal cross-section view of one embodiment of an overtube made using thermoplastic and wire core arrangements of the type shown in FIG. 6A .
  • FIGS. 6C and 6D is similar to the drawings of FIG. 6A but shows an alternate arrangement of thermoplastic elements and wire core elements.
  • FIG. 7 illustrates an alternate method of making an overtube using a thin sheet of thermopolymer or other suitable material.
  • FIGS. 7A-7B are cross-section views illustrating various lumen arrangements for the overtube.
  • FIG. 8 is a side elevation view of a distal portion of an overtube having a bougie positioned at its distal end.
  • FIG. 8A is a side elevation view of a distal portion of an overtube having a transition member and endoscope extending from its distal end.
  • FIG. 8B is a side elevation view of a distal portion of an overtube having a transition member and a guidewire endoscope extending from its distal end.
  • FIG. 9A is a side elevation view of a distal portion of an overtube having an umbrella-shaped leading element.
  • FIG. 9B is similar to FIG. 9A and illustrates inversion of the umbrella element for withdrawal.
  • FIG. 9C is similar to FIG. 9A and illustrates advancement and collapse of the umbrella element for withdrawal.
  • FIG. 10 is a side elevation view of a distal portion of an overtube having spreadable finger elements.
  • FIG. 11A is a side elevation view of a distal portion of a second embodiment of an overtube having spreadable finger elements, showing the finger elements in the retracted position.
  • FIG. 11B is similar to FIG. 11A and shows the finger elements in the expanded position.
  • FIG. 12A shows an alternative arrangement of finger elements which may be positioned on the distal end of an overtube as in FIG. 10 .
  • FIG. 12B shows the finger elements of FIG. 12A in a partially expanded position.
  • FIG. 12C shows the finger elements of FIG. 12A in the fully expanded position.
  • FIGS. 13A and 13B are perspective views of the distal portion of an overtube showing alternative shapes finger elements at the distal end of an overtube.
  • FIG. 13C is a perspective view of a vacuum cup positioned on a finger element.
  • FIG. 13D is a perspective view of a distal portion of an overtube showing an implant device mounted to the finger elements.
  • FIG. 14 is a perspective view illustrating a control mechanism for use with expandable members such as the finger elements of FIGS. 10-13D .
  • FIG. 15 is a perspective view illustrating a distal portion of an overtube having an alternate arrangement of expandable elements in the form of a pair of expandable hoops.
  • FIG. 16 is a side elevation view of an embodiment of an overtube having an articulating distal portion.
  • FIG. 17A illustrates an embodiment of a spring assembly suitable for use in the overtube of FIG. 16 .
  • FIG. 17B shows the spring assembly of FIG. 17A in an articulating position.
  • FIG. 18A is a side view of a distal portion of an overtube utilizing a stacked ring construction for the articulating section.
  • FIG. 18B is similar to FIG. 18A and shows the articulating section in an articulated position.
  • FIGS. 18C and 18D are similar to FIGS. 18A and 18B and show an alternate configuration of stacked ring elements.
  • FIG. 19 is a perspective view showing an alternate arrangement of ring elements suitable for use in the articulating section.
  • FIG. 20 is a side elevation view of a distal portion of an overtube illustrating optional inner and outer sheaths covering the articulating section.
  • FIG. 21 is a cross-sectional side view of an overtube with an instrument positioned in the lumen of the overtube, and illustrates the use of magnetic indexing.
  • FIG. 22 is a cross-sectional side elevation view showing a distal portion and intermediate portion of an overtube together with proximal control features for use in controlling the articulating section of the overtube.
  • FIG. 23 illustrates articulating control features utilizing separate spools for each pullwire cable.
  • FIG. 24A is a perspective view of a portion of a spool and knob having a selection of cable attachment points allowing for selection and/or adjustment of cable length.
  • FIG. 24B is a side elevation view showing a barrel adjuster suitable for fine tuning cable length.
  • FIG. 25 shows perspective view and proximal end views of an overtube having depth and angle markings.
  • FIG. 26 shows a distal end view, side elevation view, and proximal end view of an overtube and illustrates color coding of angle markings.
  • FIG. 27 is a side view of a distal portion of an overtube, illustrating the use of color coded markers positioned within the field of view of an endoscope used in combination with the overtube.
  • FIG. 28 is a perspective view of a proximal end of an overtube and illustrates a terminating end ring.
  • FIG. 29 is a plan view of a proximal end of an overtube and illustrates an iron intern ring.
  • FIG. 30 is a perspective view of a proximal portion of an overtube showing the use of steering controls and expandable element controls on iron an intern ring of the type shown in FIG. 29 .
  • the present invention comprises an overtube intended to be inserted trough the mouth into the esophagus of a patient, and extend at least past the pharynx, but preferably far enough for the distal end to seal against the lower esophageal sphincter (LES) at the junction between the stomach and the esophagus.
  • the overtube incorporates features that enable it to facilitate the procedure described in the Background section above though is not restricted to that single procedure.
  • the primary purpose of the present invention is to create and maintain a patent lumen that provides access from the mouth of a patient to the stomach.
  • the outer diameter of the overtube's insertable length allows it to fit within, and be insertable into, a patient's gastrointestinal tract from the mouth to the stomach.
  • the outer surface of the insertable length of the overtube is sufficiently lubricious to allow for its introduction into the esophagus and subsequent manipulations (e.g., further insertion or withdrawal, rotation), and/or is compatible with lubricants commonly used for such procedures.
  • the inner diameter of the overtube's insertable length is sufficiently large to accommodate the insertion of the instruments described in the Background section (e.g., stapler, endoscope, graspers, etc.).
  • the Overtube may be composed of multiple lumens allowing multiple tools to be inserted without interfering with each other.
  • the inner surfaces of the overtube's insertable length are sufficiently lubricious to allow the insertion of instruments and devices, and/or are compatible with lubricants commonly used for such purposes.
  • the overtube conforms to the patient's anatomy and protects anatomical features (e.g., the pharynx, esophagus, lower esophageal sphincter, etc.) from injury that may result from the insertion and manipulation of instruments during the procedure. Further, the overtube provides a means to control the position relative to the LES along the axis of insertion. The position of the distal end of the overtube may be controlled by means of insertion and withdrawal of the instrument (the “Z-level”), by means of rotation of (torquing) the insertable length of the overtube, and by optionally incorporating an articulatable, steerable, lockable section somewhere within the insertable length.
  • anatomical features e.g., the pharynx, esophagus, lower esophageal sphincter, etc.
  • the overtube provides a means to control the position relative to the LES along the axis of insertion.
  • the overtube assembly may also incorporate expandable elements at or near the distal tip that assist in creating a volume within the stomach, reshaping the walls to facilitate visualization and access.
  • the overtube possesses sufficient tensile, compressive and hoop strength to resist excessive deformation (e.g., extension, compression, collapse, kinking) during use.
  • Materials suitable for short-term mucosal tissue contact are preferable for use in the overtube, e.g., stainless steel, nitinol, silicone, urethanes, PEEK, PVC, etc.
  • FIG. 2 shows a general system diagram of the overtube 100 , and indicates the configuration and names of system components.
  • the insertable length of the overtube 101 is comprised of at least one passive section 102 and optionally at least one articulatable, lockable section 103 , which may be steered by means of controls 104 at the proximal end 105 of the assembly.
  • the proximal end also incorporates a terminating end piece 106 and an iron intern ring 107 , which serve to support and orient the device during use.
  • spreadable fingers 108 may be incorporated to facilitate maneuvers during a procedure.
  • the configuration of the spreadable fingers is determined by controls 104 at the proximal and 105 .
  • the construction of the overtube may include some or all of these elements, in different combinations, or it may omit elements, depending on the configuration. This disclosure is intended to include all combinations of inclusion or exclusion of these elements.
  • One embodiment of the present invention's insertable length 101 ( FIG. 3 ) consists of a compliant, flexible, hollow tube.
  • the preferred dimensions of the tube are approximately 38-42 cm (15-16.5 in.) in length (L), with outer diameter (OD) of approximately 1.0-2.0 cm (0.780 in.) (preferably 2.0 cm, but up to approximately 2.2 cm), inner diameter (ID) approximately 1.8 cm (0.700 in.) and wall thickness (T) approximately 0.1-0.2 cm. Larger diameters are preferable when the anatomy will accommodate it, however tubes having smaller dimensions (including those having a diameter proportioned to only accommodate small instruments or endoscopes) are also considered within the scope of this invention.
  • the tube is supported internally at least part of its length by a springform wire 112 , intended to support the compliant material comprising the tube 110 , and to improve the tube's patency when bent, and to improve the tube's torsional rigidity to facilitate rotating the overtube when in situ during a procedure (its “torquability”).
  • the springform wire reinforcement may extend the full length of the tube, or it may optionally terminate some distance short of the distal or proximal tip.
  • the reinforcement 112 may be encapsulated within the overtube's wall in a thermopolymer or thermoset polymer matrix.
  • the overtube is designed to be compliant and flexible, enabling it to follow the contours and navigate around features of the patient's anatomy, and is capable of conforming to curves with a radius of curvature of at least 1.5 in.
  • the tube 110 may also incorporate a thin woven mesh, encapsulated within the compliant material as described above, either in conjunction with the springform wire 112 or in lieu of such a wire.
  • the woven mesh may be made of stainless steel, for instance, or aluminum, or any of a variety of polymeric materials.
  • the purpose of embedding mesh within the tube is to substantially increase its torquability while having a minimal effect on its resistance to bending or its minimum radius of curvature.
  • the outer surface of the insertable length of the overtube should be sufficiently lubricious to allow for its introduction into the esophagus and subsequent manipulations (further insertion or withdrawal, rotation), and/or be compatible with lubricants commonly used in such procedures.
  • the inner surfaces of the overtube's insertable length should also be sufficiently lubricious to accommodate the insertion of instruments and devices, and/or be compatible with lubricants typically used in such applications.
  • inherently lubricious materials may be selected (e.g., PTFE), or coatings may be applied to base materials (e.g., hydrophilic or hydrophobic coatings).
  • features that prevent locking or binding between components may also be incorporated, such as serrations or surface features similar to those seen on knives designed for slicing meat. Such features facilitate sliding, rather than binding, when elements are moved relative to one another.
  • the tube 110 may include a single or large central lumen 114 a as shown in FIGS. 7A and 7B , or multiple smaller lumens 114 b as in FIG. 7C . Additionally, the tube may incorporate numerous channels 114 c completely or partially within the wall. ( FIG. 7B ). In this way, it comprises a multi-lumen tube, with at least one large central lumen whose primary purpose is facilitating the introduction of instruments and devices to the stomach, and at least one much smaller lumen, through which control cables, fluids, etc. may be routed between the proximal and distal end of the device, or to intermediate points between the ends.
  • the device presents a single, smooth outer surface to the patient, rather than having any ancillary elements separate from the overtube's insertable section itself in contact with a patient's gastrointestinal tract tissue.
  • This provides protection for the components that may be routed within these lumens, and increases control of cleanliness and thus device function, as well as reduction of requirements for biocompatibility.
  • the small channels or lumens 114 c within the wall of the overtube may serve more than one purpose: for example, the compressive housing of a Bowden cable may be unnecessary when the control cable is routed within one of the small lumens in the overtube itself, eliminating a component and simplifying the design.
  • a Bowden cable is comprised of an inner control cable which is housed in an outer housing designed to withstand compressive loads, often a coil tube. Displacements at the proximal end of the inner cable relative to the coil tube housing of a Bowden cable are transmitted to the distal end of the inner cable, and can be used as an actuator to create useful forces and motion relative to the cable housing.
  • the construction of the overtube may also be such that it may be expanded as necessary after it has been placed within a patient's anatomy.
  • One means of accomplishing this is to form the reinforcing wire rings 112 a or coil used to support the overtube structure into elliptical shapes, rather than a circular profile.
  • Such rings could also be encapsulated within a thermopolymer or thermoset polymer matrix, as described above.
  • FIG. 4B shows the cross sectional shape of the overtube's insertable length.
  • the elliptical reinforcing rings comprising the overtube's structural supports can change aspect to present a larger cross sectional area, thus allowing the large instrument to pass through.
  • FIG. 4C shows another embodiment, which relies upon support rings 112 b which are not continuous closed forms, but rather are partial rings which have a shape resembling the letter “C”.
  • the shape of the partially ring can optionally be in a closed default configuration to resemble the letter “O”, with the ends of the ring touching or overlapping, which then dilate and open a gap when expansion forces are applied.
  • more than one wire shape 112 c can be combined to create a structure which spans the full circumference of the tube ( FIG. 4D ).
  • a fold 116 may be introduced in the thermopolymer or thermoset polymer matrix encapsulating the support to facilitate such dilation ( FIG. 4D ).
  • One means of manufacturing the insertable length of the overtube assembly as described is to start with a wire 112 which is coated with a thermopolymer 113 .
  • This wire may be coiled around a mandrel 118 having the desired outer diameter or profile (the mandrel's outer diameter need not be consistent). This is depicted in FIG. 5A
  • Heat shrink 120 may then be placed over the entire wound wire and mandrel 118 and heat applied, for example with a heat gun 122 or hot box, causing the heat shrink to relax over the wire ( FIG. 5B ). With the appropriate amount of heat addition, the heat shrink material and any coatings on the wire core will then flow around and encapsulate the wire 112 ( FIG.
  • the supporting mandrel 118 may be removed, leaving a flexible, hollow tube.
  • the same technique can be performed with a wire mesh in addition to the coil of wire, or instead of the coil of wire.
  • the pitch of the wire wound around the mandrel 118 may also be varied prior to the application of heat shrink. This may be accomplished by alternating thermoplastic elements that have no wire core between windings 113 of those that have the wire core 112 , as shown in FIG. 6A . After the application of heat and the flow of the thermopolymer, this results in differences in the space between each turn of wire, affecting the overall pitch ( FIG. 6B ).
  • thermopolymer elements that have no wire core may be round, square, rectangular, or any other desired shape, and the wire 112 need not be originally coated with thermoplastic, nor are they necessarily the same size ( FIG. 6C ).
  • the cross sectional area of the thermopolymer-only elements need not have the same cross-sectional area as those containing wire ( FIG. 6D ).
  • Another means of manufacturing the insertable length of the overtube is to wrap at least one layer of a thin rolled sheet 120 a around a mandrel 118 , and then fuse the layers together using heat, adhesives or chemical means. This is shown in FIG. 7 .
  • Reinforcing elements e.g., wire and/or mesh, may be incorporated underneath, in between or on top of the rolled sheets in order to create an overtube with encapsulated support elements.
  • the distal tip may maintain the same outer diameter (herinafter “OD”), inner diameter (hereinafter “ID”) and wall thickness as the rest of the tube, or it may taper slightly to form a gentle curve. When an optional taper is incorporated into the distal tip, this serves to facilitate introduction into a patient's gastrointestinal tract, as well as helping to prevent tissue from being drawn into, and potentially pinched between, the overtube and any loose fitting components inserted into its inner lumen.
  • the distal end of the overtube 100 may be used in combination with a Bougie 124 attached to the distal tip of instruments, such as a flexible endoscope 126 for visualization, inserted to the distal end of the overtube.
  • a Bougie is a smooth bullet-shaped leading tip that facilitates introduction into a lumen.
  • the Bougie OD should be sized such that it creates a snug fit with the ID of the overtube's distal end.
  • the overtube may be inserted over a guide wire 128 ( FIG. 8B ); the guidewire inserted under direct visualization using an endoscope.
  • a transition member 130 is positioned between the inside diameter of the overtube and the outside diameter of the guidewire providing for a smooth transition.
  • This transition member preferably includes a long taper, and is composed of a soft, flexible material such as silicone. As shown in FIG. 8A , a similar transition member may be used in place of the Bougie of FIG. 8 .
  • An alternate means of achieving a gently curved leading edge is by means of a protective, thin walled umbrella-like cap 132 positioned at the distal end of the overtube.
  • the umbrella is positioned so that it fits snugly over the distal opening of the overtube, maintaining a dome shape and creating the gently curved bullet shape that facilitates insertion and prevents damage to tissue ( FIG. 9A ).
  • the umbrella may be removed by either pulling it back using an element such as a wire 134 or cable and thus inverting it so that it fits into the overtube's lumen ( FIG. 9B ), or by pushing it forward with an element such as a wire 134 or cable from the distal end of the overtube, causing the umbrella to close before withdrawing it through the overtube ( FIG. 9C ).
  • FIG. 10 illustrates how the distal end of the overtube assembly 100 may optionally include attachments or features, such as an array 136 of spreadable fingers 138 .
  • an expandable element can be used to push the stomach wall away from the overtube, expanding and increasing the amount of space available within the stomach to perform a procedure.
  • An overtube may incorporate or omit such expanders.
  • the benefits of increasing the volume within the stomach include improvements in the ability to introduce and manipulate tools, improvements in the ability to locate plications and staples, improved ability to deploy implantable devices and improved visualization. Essentially, there is more room to work, and this simplifies many of the tasks.
  • the expanders may be used to reshape the stomach in a way that facilitates the performance of the procedure.
  • the overtube when the expander is at least partially expanded, the overtube may be pulled back slightly to pull up on the LES and reshape the stomach from its normal dome-like shape into something more resembling a cone.
  • the expander During introduction of the overtube into the esophagus, the expander is preferably in its fully retracted state, so that it presents a smooth cone shape that facilitates insertion.
  • the expander Once the desired location has been reached with the distal end of the overtube (e.g., once past the LES), the expander may be caused to open partially or fully to increase the available working volume and reshape the stomach as desired. Expansion of such elements also serves to help position and support the distal end of the overtube relative to the stomach, stabilizing it and helping it maintain position.
  • FIG. 11 shows one embodiment of the expandable elements, in the form of spreadable fingers 138 .
  • the position of the fingers may be adjusted and maintained anywhere between a fully closed position ( FIG. 11A ) and a fully expanded position ( FIG. 11B ).
  • this motion is created by changing the relative position of two control rings 140 , 142 by means of at least one actuator, for example a Bowden cable.
  • movement of ring 140 pivots a hinge 144 coupled to fingers 138 .
  • At least part of the more distal control ring 140 may be sized slightly smaller than the more proximal control ring 142 so that it fits or nests at least partially within the proximal control ring 142 .
  • the fingers are preferably in their fully retracted state, so that they present a smooth Bougie-like leading edge that facilitates insertion ( FIG. 11A ).
  • the fingers may be expanded partially or fully to increase the available working volume and reshape the stomach ( FIG. 11B ). The fingers may be left in this position for the duration of the procedure, or they may be adjusted at any time as desired by the user.
  • FIG. 12 An additional embodiment of spreadable fingers is shown in FIG. 12 .
  • This version of the expandable element again incorporates two control rings, one distal 140 a and one proximal 140 b .
  • this design differs in that the spreadable fingers do not reach forward (more distal) of the distal control ring when they are fully retracted. Rather, these spreadable fingers include a hinge 146 at or near the midpoint so that they form a link located between the control rings, in effect forming a tube-like, scaffold structure.
  • pulling the distal control ring 140 a towards the proximal control ring 140 b causes the fingers to spread and deploy.
  • the rings may be approximated by any number of actuator types, such as the pullwires/Bowden cables 148 depicted in FIG. 12 which can be used to draw the rings 140 a , 140 b together, such as by drawing the distal ring 140 a towards the proximal ring 142 a .
  • At least one Bowden cable may be used, however using two or more Bowden cables allows for balancing the actuation forces more evenly around the control ring.
  • FIG. 12A shows this version of the spreadable fingers in its fully retracted position
  • FIG. 12B shows it partially expanded
  • FIG. 12C shows it fully extended.
  • the control rings may optionally incorporate features that mate when the fingers are fully deployed to provide a positive stop when the full range of motion has been achieved.
  • Another embodiment of a mechanism that may be used to control the degree of expansion of such spreadable fingers employs a Bowden cable attached at the distal end to each finger in order to determine its position. When tension is applied to each Bowden cable, either separately or simultaneously, the corresponding finger moves radially outward, creating a larger working space.
  • these fingers may also be used to maintain orientation during a procedure. Because the image from an endoscope may be rotated and may change unpredictably during the course of a procedure, features that aid in determining location and orientation are helpful. Using landmarks such as the spreadable fingers, especially when they have been individually identified, e.g., with color codes or other markings, aids in determining position of instruments and visualization components. They are especially useful for determining angular position, or “clocking”.
  • the expandable elements may serve as attachment points for a variety of additional devices.
  • they may have pads 150 attached at their distal ends that increase the surface area they present to the stomach wall when deployed, resulting in a more desirable distribution of forces and a more desirable shape ( FIG. 13A ).
  • the pads 150 a may be shaped to form a cone when the expandable elements are retracted to their closed position, facilitating introduction of the overtube into the patient ( FIG. 13B ).
  • the pads may be configured to form suction cups 150 b , which may be applied to the stomach wall and fixed in place when suction is supplied ( FIG. 13C ). The use of suction immobilizes the stomach tissue relative to the distal end of the overtube.
  • the pads may have a deployable implant 152 , such as the restrictor discussed above, temporarily mounted that, from this lead position at the distal tip of the overtube, may be delivered to one or more desired sites ( FIG. 13D ). Expansion of the fingers may then be used to deploy the implant within the stomach.
  • FIG. 14 One embodiment of a mechanism that may be used to control the degree of spread of such expandable fingers, or any other embodiment that may be effectively controlled by means of Bowden cables 148 , is shown in FIG. 14 .
  • This control handle serves to adjust the position of an inner control cable relative to an outer compressive housing of a Bowden cable 148 .
  • an outer cup 154 is used in conjunction with a slidable plate 156 .
  • the slidable plate 156 is threaded, and acts like a nut when used in combination with a thumbscrew 158 , which moves the slidable plate 156 towards or away from the outer cup 154 when it is turned.
  • the thickness of the slidable plate and the clearance between its outer edge and the inside edge of the outer cup serve to keep the slidable plate aligned and prevent it from binding within the cup as it moves. Binding and misalignment may be further prevented via the addition of alignment slots 160 , mated to pins 162 that protrude from the slidable plate.
  • the controller may act on at least one Bowden cable, and the cables may be, but are not necessarily, centered or balanced with respect to the slidable plate. Adjustment of the Bowden cable may be accomplished with a barrel adjuster, or similar component. If a barrel adjuster is used, it may be comprised primarily of a screw which has a hole drilled through its central axis.
  • the Bowden cable's compressive housing terminates against the screw head while the inner control cables runs through the screw.
  • the screw is inserted into a threaded hole, and the cable is attached to a component (such as the slidable plate shown in FIG. 14 ), the relative positions of the inner cable and outer compressive housing are adjusted.
  • FIG. 15 An alternate embodiment of an expandable element located at the distal end of the overtube or on a separate elongate member passed through the overtube, is shown in FIG. 15 .
  • a fully expanded pair of hoops are comprised of numerous piecewise sections 166 which have central tensioning cables 168 running through their centers. When the tensioning cables are relaxed, the hoop sections are free to move relative to each other, and the result is a flexible chain of short elements. This configuration is well suited for insertion of the device through the overtube.
  • the tensioning cable When the tensioning cable is placed in tension, the hoop sections are forced to join together and organize into a shape that creates additional volume within the stomach, such as the hoops, or globe, shape shown.
  • a hoop shape is depicted, however other shapes are possible and may be desirable, such as triangles, squares, umbrellas, etc.
  • At least one articulatable, lockable section may optionally be incorporated within the insertable length of the overtube.
  • FIG. 16 shows a version of the overtube that incorporates such an articulatable length, labeled 103 .
  • the purpose of the articulatable section is to facilitate positional control of instruments and devices inserted through the lumen defined by the overtube. For instance, an articulatable section may be steered (caused to bend at a desirable angle and direction), to impart a “hockey stick” shape to the insertable length of the overtube. Additionally, the shape of the articulatable section may be locked in place by immobilizing or otherwise constraining the actuating elements that determine its shape.
  • the simplest embodiments of the overtube may incorporate no such articulating section, being comprised entirely of a passive tube, as described above and depicted in FIG. 3 .
  • at least one articulatable section may be incorporated in such a way that it is coaxial and continuous with other passive, non-articulatable sections of the overtube.
  • the articulatable section(s) have an OD, ID and wall thickness similar, but not necessarily equal, to those of the passive overtube sections.
  • FIG. 16 shows the configuration of the articulatable section(s), which may be located at the distal end of the overtube, such that the section 108 has minimal length or zero length.
  • the articulatable sections may be located between passive sections of the overtube, such that the length of sections labeled 108 and 102 are non-zero.
  • the articulating section may be located at the proximal end of the overtube so that the length of the passive section 102 has minimal or zero length.
  • they may be located in any of the positions defined above, and they may be located next to each other or separated by passive sections.
  • the preferred number of articulating sections is either zero or one, and the preferred location of the articulating section is near the distal end of the overtube, such that the length of the passive section 108 is between 0-6 in.
  • Steering control of the articulatable section may be achieved by a variety of methods.
  • the preferred method is to control articulation with at least one pull cable, such as a Bowden cable, acting within a coil tube compression housing.
  • a single such control cable can be used to control the shape of the articulatable section in one direction (e.g., to the right), or a single cable can be used in combination with an opposing spring element to cause articulation in two directions (e.g., the spring pulls to the left and the cable pulls to the right).
  • two control cables can be used to control articulation in two directions (e.g., left and right).
  • control cables can be used in combination to allow for articulation in all directions (e.g., left, right, up and down), or four control cables can be used, each directly controlling bending of the articulatable section in each direction.
  • the use of four control cables is the preferred method, as the resulting control is simple and intuitive for the user.
  • the control cables may be used to steer, or determine the curvature of, the articulating section of the overtube.
  • FIG. 22 shows an example where two control cables are used to control the articulation angle ⁇ of a distal articulatable section in two directions, up (U) and down (D).
  • the coil tube housings associated with the control cables are routed from a rotating control knob 170 located at the proximal end of the overtube assembly, down the length of the overtube to the junction between the length of passive overtube 102 and the articulatable section 103 controlled by the knob 170 .
  • Rotating the control knob in one direction results in one control cable being pulled in and an opposing control cable being spooled out.
  • rotating the control knob in the opposite direction reverses these motions.
  • FIG. 22 illustrates the case where the control knob is rotated clockwise by the user. This results in the upper control cable 172 being pulled relative to its compression coil tube housing 174 , and this defines the minor arc length (l) along the top edge of the articulating length. Simultaneously, the rotation of the knob 170 releases tension on and feeds out the bottom control cable 176 relative to its corresponding compression coil tube housing 178 , defining the major arc length (L) along the bottom edge of the articulating section.
  • Variations of this design may incorporate four control cables, each determining the bending of the articulatable section in a different direction, such as left, right, up and down.
  • two knobs are used.
  • One knob controls one pair of control cables, e.g., the left-right pair
  • the other knob controls the other pair of control cables, e.g., the up-down pair.
  • the steering control knobs may optionally be oriented so that their position relates to the direction of steering they control. For example, when two knobs are used with one knob controlling left-right bending and the other knob controlling the up-down bending, the knobs may be rotated relative to one another by 90°. Further, the knobs may be oriented so that the position of the knob controlling bending in the left-right directions is horizontal and the position of the knob controlling bending in the up-down directions is vertical.
  • each of the Bowden cables is critical to their correct performance, and for this reason elements that facilitate their adjustment are helpful. Even in cases where they have been cut to the exact length required and perfectly installed, cables typically stretch over time and use, and will require periodic adjustment. For this reason, the control knob assemblies may incorporate a number of means of cable adjustment.
  • One useful characteristic of a control knob is to incorporate a means to deal individually with each control cable that terminates there. For instance, if the control knob determines the shape of the articulatable section in the left-right direction, the cable controlling bending to the left can be managed and kept separate and adjusted independently of the cable controlling bending to the right.
  • FIG. 23 This may be accomplished by incorporating two completely separate sections 170 a , 170 b of the control knob, one for each terminating control cable, as illustrated in FIG. 23 .
  • the 2-part spool is indicated with the reference numerals 171 a , 171 b .
  • Coarse cable adjustment can be provided by incorporating a multitude of attachment points between the knob described in the paragraph above and the Bowden cable.
  • the spool around which the control cable is wound requires a single potential attachment point, such as a pin, for a control cable, however if multiple potential attachment points are provided, the length of the cable may be adjusted relative to the position of the spool and knob.
  • the route of the control cable wire to the control knob termination point is preferably but not necessarily smooth, so that it does not present any hard corners or sharp edges to the cable, extending its operating life. Fine cable adjustment may be accomplished with the addition of a barrel adjuster or similar element.
  • a barrel adjuster In the case of a barrel adjuster, a screw is drilled through its central axis, and the cable's compressive housing terminates against the screw head while the inner control cable runs through the screw. When the screw is inserted into a threaded hole 182 , and the cable is attached to a component (such as the spool shown in FIG.
  • the relative positions of the inner cable and outer compressive housing may be adjusted by the position of the screw. Turning the screw so that it moves towards the cable's termination point (e.g., clockwise for right-handed threads) loosens the cable. Conversely, turning the screw so that it moves away from the cable's termination point (e.g., counter-clockwise for right-handed threads) tightens the cable. This is depicted in FIG. 24B .
  • Control of an articulating section may also be achieved by means other than Bowden cables. Any appropriate alternate actuation method and energy source may be used, such as hydraulic or pneumatic actuators, which could be used to create the motion and forces needed to bend the articulatable section.
  • the articulatable sections may be constructed using a variety of techniques.
  • One simple embodiment consists of a single coil spring element 112 capable of bending as desired, and is shown in FIG. 17A .
  • the proximal 184 and distal 186 ends of the spring are fitted with end caps 188 that provide termination points for actuating elements (described below) and mounting features for attaching them to other parts of the overtube's insertable length. Additional features may be useful for routing components that traverse through the articulatable section, such as Bowden cables running between the user controls at the proximal end and the expandable elements at the distal tip.
  • the spring element 112 may have significant space between the coil windings so that it bends freely when a moment is applied between the distal and proximal ends without changing length significantly.
  • a Bowden cable may be used, attached across one side of the outside of the spring element. If the Bowden cable's compressive housing terminates at the proximal end cap 188 a of the spring element, and the control cable terminates at the distal end cap 188 b of the spring element, pulling on the cable relative to the compressive housing results in the spring bending in the direction of the cable, as shown in FIG. 17B .
  • a backbone 190 extending through the overtube prevents collapse of the spring during bending.
  • Bending the spring element in other directions is achievable by attaching additional Bowden cables in other locations around the outside of the spring element.
  • a benefit of this construction is that the spring element comprising the articulatable section returns to a straight shape when tension is released from the control cables: its relaxed configuration is straight.
  • the spring element comprising the articulatable section of this construction may be created by attaching a separate spring to passive sections of the overtube to create the full insertable length of the overtube, or it may be formed from the same materials used as the supporting structure of the passive sections of the insertable overtube. This can be accomplished by altering the winding pitch and/or the diameter locally, if needed, where the articulatable section is required.
  • An alternative means of constructing an articulatable section is to create it by stringing together on cables 194 a succession of rings shaped in such a way that they are allowed to rock relative to one another. The rocking motion can again be controlled through the use of Bowden cables.
  • This construction technique is illustrated in FIG. 18A through D.
  • the shape of each ring is such that it forms an inner lumen, and is preferably (but not necessarily) round.
  • the inner radius r is sized so that it is approximately the same as the inner radius of the rest of the insertable length of the overtube.
  • the outer radius R and the wall thickness T are equal to or as close as possible to the outer radius of the rest of the insertable length of the overtube.
  • each ring's wall parallel to the central axis of the overtube, at the 3, 6, 9 and 12 o'clock positions. These holes accept the control cables 194 , which run through each ring and hold the assembly together.
  • each ring When viewed from the side, as shown in FIG. 18A , each ring is flat along the bottom surface and has two aligned raised arches along the top surface. In the figure, these are shown in the 12 and 6 o'clock orientation. The raised sections are oriented so that their peaks are coincident with the small holes drilled through the wall.
  • To assemble the articulatable section a number of rings are strung together using control cables 194 .
  • each cable is terminated, e.g., with a crimp 196 .
  • each compressive housing is terminated.
  • the cables themselves constrain the relative motion of the rings so that the result is piecewise bending. This is shown in FIG. 18B and FIG. 18D .
  • the rings are prevented from sliding relative to each other and losing organization by the cables that connect them.
  • Such rings may be comprised of any of a variety of materials that possess adequate strength, however stainless steel or polycarbonate are preferred.
  • FIGS. 18A and B show the construction that results in articulation in two directions (left and right).
  • the raised portions of each of the rings are all oriented similarly, e.g., from the 12 o'clock position to 6 o'clock position.
  • control cables are actuated at the 3 o'clock position or the 9 o'clock position, the assembly is caused to rock in the direction of the cable under tension.
  • all of the rings contribute to the bending of the assembly.
  • the other two cables (at 12 o'clock and 6 o'clock) are always held at a fixed length and pretension, and applying further tension to them would not result in bending the articulatable section. Instead, these cables serve primarily to string the rings together and stabilize the assembly. They may terminate immediately at the proximal end of the articulatable section, without the use of compressive housings, or they may optionally extend back to the proximal controls.
  • FIGS. 18C and D show a variation of the construction that enables the assembly of rings to articulate in four directions (left, right, up and down).
  • the raised portions of each of the rings are alternated, rotated 90° between successive rings.
  • the assembly is caused to rock in the direction of the cable(s) under tension.
  • each ring contributes to the bending of the assembly in two of the four possible directions, such as the left and right pair. Every other ring contributes bending in the left-right directions, alternating with rings that contribute bending in the up-down directions.
  • FIG. 18D illustrates the contributions of each of the rings in the assembly when a single cable is pulled.
  • stacked ring embodiments of the articulatable section may also be used to construct unarticulatable sections. Such sections are flexible, but their articulation is not selectable or controllable by a user.
  • the entire length of the overtube may be constructed using a continuous assembly of rings, oriented in at least one of the ways described above.
  • the shape of at least one region of the assembly may be controllable (e.g., articulatable or steerable) via Bowden cables, as described, while the remaining regions of the assembly which are not controllable have no Bowden cables determining their shape.
  • FIG. 19 Another embodiment of an articulatable section is shown in FIG. 19 .
  • rings 198 that are joined with hinge joints 200 are combined to form an assembly that may be caused to articulate in a desired direction by means of an actuator that pulls differentially in a given direction, such as a Bowden cable.
  • the orientation of successive hinges may alternate in increments of 90° as shown, which enables bending in four directions (e.g., left, right, up and down), or all hinges may be aligned in the same orientation, which will allow for bending in two directions (e.g., left and right).
  • the balance of the insertable length of the overtube may also optionally be made using this construction.
  • a single section, multiple sections, or no section may then optionally be made articulatable by means of actuators such as Bowden cables.
  • the articulatable section may have either a continuous outer sheath 202 or surface, a continuous inner sheath 204 or surface, or both (e.g., sheaths positioned over the inner and outer surfaces of the articulating rings, coil or other articulating features, or an encapsulation/positioning of such articulating features within the walls of a sheath). This is shown in FIG. 20 .
  • the material used to create the sheath preferably offers little resistance to the bending of the articulatable section. For this reason, soft materials, such as a low durometer, thin wall urethane, silicone or similar material are preferred.
  • the overtube's terminating end piece provides an air tight seal against devices inserted through the inner lumen for the purpose of facilitating and maintaining insufflation of the stomach during a procedure, and if the overtube is not a continuously sealed tube along its insertable length, air leaks are likely to occur. Insufflation facilitates visualization and access by increasing the volume of the stomach where the procedure is performed, and when insufflation is not adequate, the procedure may be negatively impacted.
  • Components may be added to or incorporated within the overtube to provide tactile feedback to users when instruments within the overtube's inner lumen are moved.
  • elements may be used that provide the sensation of indexing, such as a ratcheting feel of engagement and disengagement, when an instrument is inserted into the overtube to specific depth intervals, or rotated relative to the overtube 100 at angular intervals.
  • indexing such as a ratcheting feel of engagement and disengagement
  • One embodiment of such a feature makes use of magnetic interactions. If at least one magnet 206 or magnetically attractive element is incorporated into the overtube, and a corresponding magnet 208 or magnetically attractive element is incorporated into an instrument 210 that moves relative to the overtube, the elements will attract or repel each other as they move into and out of proximity. This is illustrated in FIG. 21 .
  • a ball detent mounted either in the overtube or in an insertable instrument that indexes against indentations in a mating surface.
  • the indentations may be either circular or elongate in shape.
  • the proximal end of the overtube may incorporate graduated markings indicating depth and radial angle ( FIG. 25 ).
  • the depth markings 212 a enable users to quantitatively track and control the depth of insertion of the overtube into the patient, as well as the depth of insertion of instruments, tools and devices into the overtube.
  • the radial angular markings 212 b similarly enable users to quantitatively track and control the angular position (also called “clocking”) of the overtube and the instruments, tools and devices inserted into the overtube.
  • the depth and angle markings also enable users to repeatedly return an instrument or device to a previously achieved location when required. Additionally, the depth and angle markings enable users to reposition instruments and devices at a known location relative to a previously achieved location.
  • a physician wishes to create a new stapled mounting point in the stomach wall at a location 90° clockwise and at an equivalent distance from the LES relative to a previously placed stapled mounting, he or she would ensure that the overtube was inserted to the same depth and angular position into the patient for both sequences of operations, that the instruments used were inserted into the overtube at the same depth, and that the instruments were rotated 90° clockwise as indicated on the overtube's angular markings.
  • the angular markings at the proximal end of the overtube may be further identified by means of color coding ( FIG. 26 ). For instance, the quadrant from 0° to 90° may be indicated with the color green (G), the quadrant from 90° to 180° with red (R), 180° to 270° with blue (B), and 270° to 0° with no color (NC) added.
  • G color green
  • R red
  • B 180° to 270° with blue
  • NC 270° to 0° with no color
  • These color codings may be coordinated with similar markings at the distal end of the overtube 110 which will be visualized with an endoscope. This improves the ability of the user to maintain proper orientation and obtain the desired result when manipulating instruments at the proximal end of the overtube, since it directly corresponds to what he or she observes visually at the distal end of the overtube.
  • the color coding at the distal end of the overtube may be applied anywhere that may be visualized by an endoscope placed inserted through the inner lumen, such as to the overtube itself (including passive and/or articulatable sections), or to components attached to and extending beyond the distal end of the overtube.
  • expandable elements such as spreadable fingers may be added to the end of the overtube which may each be a unique color.
  • components may be extended from the distal end of the overtube for the express purpose of placing color coded markings within the field of view of the endoscope ( FIG. 27 ).
  • These forward-extending components may be of any useful shape, e.g., a tubular antenna, or a garden-hoe-like flag.
  • the steering controls that determine the angle and direction of the articulatable section may also be marked to correspond to the markings on components at the distal end of the overtube. If, for instance, the spreadable finger located at the top of the overtube (at the 12 o'clock position) is red, the control knob that determines the up-down position of the articulatable section will have a red marking on it indicating which direction it should be turned to cause the articulatable section to bend in the up direction. Similarly, if the spreadable finger located at the bottom of the overtube (at the 6 o'clock position) is blue, then markings on the same knob will incorporate an indication of which direction it should be turned to cause the articulatable section to bend down. This may be done, for example, by marking the knobs with different color arrows.
  • each knob may be marked with an indication of when the articulatable section is approximately straight.
  • a marking indicating the “neutral” position of the articulatable section allows a user to straighten the articulatable section with high confidence, rather than relying on “feel” or for the articulatable section to return to a straight configuration if tension is released on the controlling Bowden cables.
  • a positive retention force and tactile feedback may also be provided in the steering control knobs by incorporating ball detent components and a sequence of mating indentations.
  • the ball detents can prevent the knob from turning freely, thus preventing the articulatable section from unintentionally returning to its relaxed neutral position.
  • the indexing that occurs as the ball detent moves through the succession of indentations may also provide useful tactile feedback to the user, indicating increments of rotation of a knob and/or certain positions of the articulatable section, such as straight or neutral.
  • the proximal end of the overtube incorporates a terminating end ring ( FIG. 28 ).
  • the end ring is attached to, and is not free to move relative to, the insertable length of the overtube.
  • the end ring incorporates at least one sealing feature for the purpose of creating and maintaining an air-tight seal against components inserted into its inner lumen. When insufflation or suction is applied through the overtube or by instruments passing within the overtube, this seal prevents flow between the inside and the outside of a patient.
  • the sealing feature may take the form of at least one o-ring, but preferably two o-rings.
  • the end ring incorporates a port for the introduction of insufflation. This port accepts tubing through which insufflation air may flow.
  • a clamp valve may be installed over the insufflation tubing to control the flow of air, or the flow may be controlled by means of turning the insufflation pump on and off.
  • a fixturing ring 220 ( FIG. 29 ) may be fitted that facilitates attachment to a clamping or fixturing device, such as an iron intern.
  • a clamping or fixturing device such as an iron intern.
  • this device may also be referred to as an “iron intern ring”.
  • the iron intern ring fits loosely over the terminating end ring, so that it is possible to rotate them relative to each other.
  • the fixturing ring also incorporates at least one tensioning element that, when active, immobilizes the terminating end ring relative to the fixturing ring.
  • This tensioning element may be embodied, for example, by at least one screw 222 that, when tightened, locks the terminating end ring relative to the iron intern ring, preventing rotation and axial motion.
  • more than one screw is used to distribute the clamping load.
  • three clamping screws are shown in FIG. 29 .
  • This screw may also incorporate features that facilitate frequent adjustment without requiring the use of tools. For instance, large knobs may be located on the screw heads to enable users to tighten and loosen them by hand.
  • the iron intern ring is also the mounting point for elements of the overall device that are inconvenient to rotate in the event that the insertable length of the overtube is torqued.
  • the steering controls e.g., left-right control 226 and up-down control 228
  • the expandable element controller 230 are incorporated into a single component, and this component is attached to the iron intern ring ( FIG. 30 ).
  • An overtube may be packaged alone or as a system in combination with related components such as staplers and implants of the type referenced in the application, as well as any combination of the following: Bougies, transition members, guidewires, endoscopes etc.
  • the system might further include instructions for use instructing a user to employ the system in accordance with the methods disclosed herein.
  • the overtube comprises an articulating section, an actuator for effecting articulation of the articulating section, and an optional locking mechanism allowing the articulating section to be locked in a desired position.
  • the overtube comprises an elongate tube having one or more retraction elements on its distal end, allowing the overtube to create working space within the body (e.g., stomach) while giving access to instruments passed through its lumen.

Abstract

This application describes an overtube device that gives diagnostic and/or therapeutic access to body cavities using natural orifices of the body. The overtube includes an elongate flexible body having a distal portion deflectable in response to activation of a control cable. Proximal features of the overtube include an insufflations port and seals for minimizing loss of insufflations pressure around the shafts of instruments passed through the tube. In some embodiments, retractor elements are including on the distal portion of the overtube.

Description

    PRIORITY
  • This is application claims priority to U.S. Provisional Application No. 60/950,584, filed Jul. 18, 2007
  • BACKGROUND OF THE INVENTION
  • This application describes an overtube/introducer device that gives access to body cavities using natural orifices of the body (e.g., esophagus, anus, vagina) for a variety of therapeutic and/or diagnostic procedures. In a particular application, the overtube/introducer enables the introduction of devices into the gastrointestinal tract of a patient via the mouth and esophagus. Therapies to be carried out using the introducer can include procedures designed for the treatment of obesity. The disclosed overtube provides in and out access to the targeted procedural site and protects the body tissue during the procedure from trauma.
  • The disclosed overtube is suitable for use in an exemplary procedure in which the geometry of the stomach is modified and implantable devices are deployed. The procedure is preferably performed entirely through the naturally existing orifice of the mouth, without additional external incisions.
  • The exemplary procedure is initiated with the introduction of an overtube into the mouth and, at a minimum, past the pharynx of a patient but preferably reaching and sealing against the lower esophageal sphincter (LES). For reference, FIG. 1 shows the anatomy of the human head and stomach, with reference numerals identifying the following features:
      • 1. Body of stomach
      • 2. Fundus
      • 3. Anterior wall
      • 4. Greater curvature
      • 5. Lesser curvature
      • 6. Lower esophageal sphincter (LES)/gastroesophageal junction
      • 9. Pyloric sphincter
      • 10. Pyloric antrum
      • 11. Pyloric canal
      • 12. Angular notch
      • 13. Gastric Canal
      • 14. Rugal folds
  • The entire exemplary procedure is preferably performed under direct endoscopic visualization, obtained by inserting a flexible endoscope into the overtube prior to its introduction into the patient, though the procedure (or individual steps of the procedure) may also be performed without direct visualization. In cases where an endoscope is used, the endoscope's distal tip may be inserted into a flexible Bougie that incorporates a central lumen allowing direct line-of-sight for the endoscope's illumination and visualization optics. The endoscope with the installed Bougie may then be inserted into the overtube's central lumen until the Bougie protrudes just past the overtube's distal end. This provides a gentle leading edge that facilitates insertion of the Bougie, overtube and endoscope into the patient's esophagus.
  • Alternatively the overtube may be inserted over a guide wire; the guidewire inserted under direct visualization using a standard endoscope. A transition member is positioned between the inside diameter of the overtube and the outside diameter of the guidewire providing for a smooth transition. This transition is preferably a long taper, and composed of a soft, flexible material such as silicone.
  • Once the overtube, endoscope and Bougie have reached the desired position within the esophagus, the endoscope and Bougie are withdrawn from the overtube, and the overtube is left in position. The overtube is now in a position to facilitate the introduction of other tools and devices needed to perform subsequent steps.
  • With the overtube in the desired position, a special-purpose stapler is inserted which will be used to prepare sites within the stomach wall tissue that will serve as mounting points for implantable devices to be installed in later steps. Staplers suitable for this procedure include those disclosed in the following U.S. Applications:
      • U.S. application Ser. No. 11/542,457, filed Oct. 3, 2006, Attorney Docket BARO-1110;
      • U.S. application Ser. No. 11/900,757, filed Sep. 13, 2007, Attorney Docket BARO-1310.
      • U.S. application Ser. No. 12/119,329, filed May 12, 2008, Attorney Docket BARO-1610.
      • U.S. application Ser. No. 12/050,169, filed Mar. 18, 2008, Attorney Docket BARO-1900.
  • In one such stapler, the leading distal tip of the stapler mechanism is covered with a compliant, bullet-shaped, Bougie end cap, and incorporates a side-looking window. The smooth Bougie shape of the end cap facilitates introduction of the stapler into the overtube and past the distal end of the overtube into the patient's esophagus or stomach. The side window allows stomach wall tissue to be drawn between the stapler jaws prior to the application of staples. The stapler incorporates a passive flexible length which allows the device to bend freely between the user controls at the proximal end and the stapler mechanism at the distal end. Insertion of the stapler is preferably performed under direct endoscopic visualization, with an endoscope positioned next to the stapler such that its camera optics are located slightly proximal of the stapler's distal end. In this way, the position of the stapler may be visualized at all times, relative to its position within the overtube, esophagus and stomach. However, insertion of the stapler may optionally be performed without using an endoscope for visualization.
  • With the stapler inserted into the stomach, it may then be positioned relative to the stomach wall near the lower esophageal sphincter as desired. In order to achieve the desired position and visualization, it may be necessary to withdraw or further insert the overtube, or to manipulate certain features of the overtube, in such a way that it advantageously alters the geometry of the tissue and/or the overtube's relative position. When the position of the stapler is judged to be correct, suction is applied to draw stomach wall tissue into the stapler end cap's side-looking window. This positions the stomach wall tissue between the jaws of the stapler, which are then approximated via a physician-controlled actuator to clamp the tissue firmly in position. Once the tissue has been securely fixtured, the suction may be released, as it is no longer needed to retain the stomach tissue. Staples are then deployed by means of a second physician-controlled actuator through the plication, or fold, of stomach tissue between the stapler's jaws to create circular rings about a central point. A hole is created in the plication of stomach tissue at the center of the pattern of stapes simultaneous to the application of the staples. The hole and surrounding circular array of staples create a secure and durable mounting point (e.g., for implantable devices), and will be used in later steps of the procedure. Once the staples have been deployed and the mounting point has been created, the physician releases the plication from the stapler's jaws and any remaining suction. The stapler and endoscope are then withdrawn from the overtube.
  • For staplers that must be re-loaded prior to the creation of the next mounting point, the stapler is withdrawn from the overtube and the distal stapling mechanism is then reloaded. For self-reloading stapler mechanisms, this step is not required. If reloading is required and has been performed, the reloaded device, Bougie end cap and endoscope are reinserted into the overtube. The process of positioning the stapler mechanism within the stomach described above is repeated so that the next mounting point is identified and created. This process is repeated to produce one or more anchor points, but preferably four mounting points are created. These mounting points may be anywhere within the stomach, but they are preferably located at the 3, 6, 9 and 12 o'clock positions, a fixed distance away from the lower esophageal sphincter. If the mounting points are to be used as anchor points for a flow restrictor of the type used to restrict/obstruct passage of food from the esophagus into the stomach, the preferential distance of the mounting points is such that the position of the exit of a restrictor attached at the mounting points will be immediately adjacent the lower esophageal sphincter. Exemplary restrictor devices include but are not limited to those disclosed in U.S. Pat. Nos. 6,675,809, 6,845,776, 7,097,665, and 7,146,984, U.S. application Ser. No. 10/345,666, filed Jan. 16, 2003, Attorney Docket No. BARO-300, and U.S. application Ser. No. ______, Endoscopic Implant System and Method, Attorney Docket BARO-2010, filed Jul. 17, 2008.
  • Once the desired mounting points have been created with the stapler, the stapler is withdrawn. Next, highly compliant anchors are installed through the hole at the center of each of the mounting points. The anchors have a rivet-like shape with large retaining heads on either end. The anchors are intended to be installed in the holes at the center of the mounting points, remain in position indefinitely or until removed, and be easily removable. The anchors are configured such that they may be grasped and pulled from one end (herein referred to as the “leading end”), and the resulting tension causes the leading end retaining head to change profile so that it may be drawn through the hole in a mounting point. The other end of the anchor (herein referred to as the “following end”) is designed so that tension resulting from drawing it through the mounting hole does not result in a change to its profile, so it cannot be drawn through the mounting hole. Anchors of this type are described in U.S. application Ser. No. ______, Endoscopic Implant System and Method, Attorney Docket BARO-2010, filed Jul. 17, 2008
  • Anchors are positioned in each of the mounting holes by means of graspers or similar instruments, which pull them, leading end first, through the mounting holes. Once the anchors are installed, the instruments required to insert them are withdrawn from the overtube.
  • Finally, a restrictor is inserted into the stomach via the overtube. The restrictor is attached to the anchors, and will remain in the stomach after the procedure for an indefinite period of time, such as the point in time when a physician determines the patient has achieved sufficient weight loss. The restrictor is attached to the anchors by drawing the leading end of the anchors through mounting holes in the restrictor using graspers or other instruments, as appropriate.
  • When the restrictor is attached to the anchors, the procedure is complete and the overtube may be withdrawn from the patient, along with any tools remaining in the lumen it defines (e.g., endoscope, graspers, etc.).
  • Upon completion of the procedure, the overtube has enabled the deployment of a restrictor, which is attached to anchors that have been implanted into stapled plications in the stomach wall. The passage of food into the stomach from the esophagus has been restricted, altering the patient's feelings of satiety and eating habits.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically illustrates certain aspects of the anatomy of the head and stomach;
  • FIG. 2 is a side elevation view of an embodiment of an overtube
  • FIG. 3 is a side elevation view of a distal portion of the overtube of FIG. 2.
  • FIG. 4A is a side elevation view of an alternate portion of an overtube, showing expansion of the distal portion in response to introduction of an instrument into the overtube.
  • FIG. 4B illustrates a reinforcing ring suitable for use in the deformable overtube of FIG. 4A and shows degrees of deformation of the reinforcement ring in response to instrument advancement through the overtube.
  • FIG. 4C is a cross-section view of the tube of FIG. 4A, shown as transparent to permit viewing of an alternate reinforcement. The figure shows deformation of the reinforcement ring in response to instrument advancement through the overtube. FIG. 4D is similar to FIG. 4C and shows yet another alternate reinforcement.
  • FIG. 5A-5C are a sequence of steps illustrating one embodiment of an overtube manufacturing technique
  • FIG. 6A shows three cross-section views of arrangements of alternating thermoplastic elements with and without wire cores that may be used to form a wall of an overtube in the method of FIGS. 5A-5C.
  • FIG. 6B is a longitudinal cross-section view of one embodiment of an overtube made using thermoplastic and wire core arrangements of the type shown in FIG. 6A.
  • FIGS. 6C and 6D is similar to the drawings of FIG. 6A but shows an alternate arrangement of thermoplastic elements and wire core elements.
  • FIG. 7 illustrates an alternate method of making an overtube using a thin sheet of thermopolymer or other suitable material.
  • FIGS. 7A-7B are cross-section views illustrating various lumen arrangements for the overtube.
  • FIG. 8 is a side elevation view of a distal portion of an overtube having a bougie positioned at its distal end.
  • FIG. 8A is a side elevation view of a distal portion of an overtube having a transition member and endoscope extending from its distal end.
  • FIG. 8B is a side elevation view of a distal portion of an overtube having a transition member and a guidewire endoscope extending from its distal end.
  • FIG. 9A is a side elevation view of a distal portion of an overtube having an umbrella-shaped leading element.
  • FIG. 9B is similar to FIG. 9A and illustrates inversion of the umbrella element for withdrawal.
  • FIG. 9C is similar to FIG. 9A and illustrates advancement and collapse of the umbrella element for withdrawal.
  • FIG. 10 is a side elevation view of a distal portion of an overtube having spreadable finger elements.
  • FIG. 11A is a side elevation view of a distal portion of a second embodiment of an overtube having spreadable finger elements, showing the finger elements in the retracted position.
  • FIG. 11B is similar to FIG. 11A and shows the finger elements in the expanded position.
  • FIG. 12A shows an alternative arrangement of finger elements which may be positioned on the distal end of an overtube as in FIG. 10.
  • FIG. 12B shows the finger elements of FIG. 12A in a partially expanded position.
  • FIG. 12C shows the finger elements of FIG. 12A in the fully expanded position.
  • FIGS. 13A and 13B are perspective views of the distal portion of an overtube showing alternative shapes finger elements at the distal end of an overtube.
  • FIG. 13C is a perspective view of a vacuum cup positioned on a finger element.
  • FIG. 13D is a perspective view of a distal portion of an overtube showing an implant device mounted to the finger elements.
  • FIG. 14 is a perspective view illustrating a control mechanism for use with expandable members such as the finger elements of FIGS. 10-13D.
  • FIG. 15 is a perspective view illustrating a distal portion of an overtube having an alternate arrangement of expandable elements in the form of a pair of expandable hoops.
  • FIG. 16 is a side elevation view of an embodiment of an overtube having an articulating distal portion.
  • FIG. 17A illustrates an embodiment of a spring assembly suitable for use in the overtube of FIG. 16.
  • FIG. 17B shows the spring assembly of FIG. 17A in an articulating position.
  • FIG. 18A is a side view of a distal portion of an overtube utilizing a stacked ring construction for the articulating section.
  • FIG. 18B is similar to FIG. 18A and shows the articulating section in an articulated position.
  • FIGS. 18C and 18D are similar to FIGS. 18A and 18B and show an alternate configuration of stacked ring elements.
  • FIG. 19 is a perspective view showing an alternate arrangement of ring elements suitable for use in the articulating section.
  • FIG. 20 is a side elevation view of a distal portion of an overtube illustrating optional inner and outer sheaths covering the articulating section.
  • FIG. 21 is a cross-sectional side view of an overtube with an instrument positioned in the lumen of the overtube, and illustrates the use of magnetic indexing.
  • FIG. 22 is a cross-sectional side elevation view showing a distal portion and intermediate portion of an overtube together with proximal control features for use in controlling the articulating section of the overtube.
  • FIG. 23 illustrates articulating control features utilizing separate spools for each pullwire cable.
  • FIG. 24A is a perspective view of a portion of a spool and knob having a selection of cable attachment points allowing for selection and/or adjustment of cable length.
  • FIG. 24B is a side elevation view showing a barrel adjuster suitable for fine tuning cable length.
  • FIG. 25 shows perspective view and proximal end views of an overtube having depth and angle markings.
  • FIG. 26 shows a distal end view, side elevation view, and proximal end view of an overtube and illustrates color coding of angle markings.
  • FIG. 27 is a side view of a distal portion of an overtube, illustrating the use of color coded markers positioned within the field of view of an endoscope used in combination with the overtube.
  • FIG. 28 is a perspective view of a proximal end of an overtube and illustrates a terminating end ring.
  • FIG. 29 is a plan view of a proximal end of an overtube and illustrates an iron intern ring.
  • FIG. 30 is a perspective view of a proximal portion of an overtube showing the use of steering controls and expandable element controls on iron an intern ring of the type shown in FIG. 29.
  • DETAILED DESCRIPTION
  • The present invention comprises an overtube intended to be inserted trough the mouth into the esophagus of a patient, and extend at least past the pharynx, but preferably far enough for the distal end to seal against the lower esophageal sphincter (LES) at the junction between the stomach and the esophagus. The overtube incorporates features that enable it to facilitate the procedure described in the Background section above though is not restricted to that single procedure. The primary purpose of the present invention is to create and maintain a patent lumen that provides access from the mouth of a patient to the stomach. The outer diameter of the overtube's insertable length allows it to fit within, and be insertable into, a patient's gastrointestinal tract from the mouth to the stomach. The outer surface of the insertable length of the overtube is sufficiently lubricious to allow for its introduction into the esophagus and subsequent manipulations (e.g., further insertion or withdrawal, rotation), and/or is compatible with lubricants commonly used for such procedures. The inner diameter of the overtube's insertable length is sufficiently large to accommodate the insertion of the instruments described in the Background section (e.g., stapler, endoscope, graspers, etc.). Alternatively, the Overtube may be composed of multiple lumens allowing multiple tools to be inserted without interfering with each other. The inner surfaces of the overtube's insertable length are sufficiently lubricious to allow the insertion of instruments and devices, and/or are compatible with lubricants commonly used for such purposes. The overtube conforms to the patient's anatomy and protects anatomical features (e.g., the pharynx, esophagus, lower esophageal sphincter, etc.) from injury that may result from the insertion and manipulation of instruments during the procedure. Further, the overtube provides a means to control the position relative to the LES along the axis of insertion. The position of the distal end of the overtube may be controlled by means of insertion and withdrawal of the instrument (the “Z-level”), by means of rotation of (torquing) the insertable length of the overtube, and by optionally incorporating an articulatable, steerable, lockable section somewhere within the insertable length. The overtube assembly may also incorporate expandable elements at or near the distal tip that assist in creating a volume within the stomach, reshaping the walls to facilitate visualization and access. The overtube possesses sufficient tensile, compressive and hoop strength to resist excessive deformation (e.g., extension, compression, collapse, kinking) during use. Materials suitable for short-term mucosal tissue contact are preferable for use in the overtube, e.g., stainless steel, nitinol, silicone, urethanes, PEEK, PVC, etc.
  • Overview and System Layout
  • FIG. 2 shows a general system diagram of the overtube 100, and indicates the configuration and names of system components. The insertable length of the overtube 101 is comprised of at least one passive section 102 and optionally at least one articulatable, lockable section 103, which may be steered by means of controls 104 at the proximal end 105 of the assembly. The proximal end also incorporates a terminating end piece 106 and an iron intern ring 107, which serve to support and orient the device during use. At the distal end 108 of the overtube, spreadable fingers 108 may be incorporated to facilitate maneuvers during a procedure. The configuration of the spreadable fingers is determined by controls 104 at the proximal and 105. The construction of the overtube may include some or all of these elements, in different combinations, or it may omit elements, depending on the configuration. This disclosure is intended to include all combinations of inclusion or exclusion of these elements.
  • Insertion Tube Characteristics
  • One embodiment of the present invention's insertable length 101 (FIG. 3) consists of a compliant, flexible, hollow tube. The preferred dimensions of the tube are approximately 38-42 cm (15-16.5 in.) in length (L), with outer diameter (OD) of approximately 1.0-2.0 cm (0.780 in.) (preferably 2.0 cm, but up to approximately 2.2 cm), inner diameter (ID) approximately 1.8 cm (0.700 in.) and wall thickness (T) approximately 0.1-0.2 cm. Larger diameters are preferable when the anatomy will accommodate it, however tubes having smaller dimensions (including those having a diameter proportioned to only accommodate small instruments or endoscopes) are also considered within the scope of this invention. The tube is supported internally at least part of its length by a springform wire 112, intended to support the compliant material comprising the tube 110, and to improve the tube's patency when bent, and to improve the tube's torsional rigidity to facilitate rotating the overtube when in situ during a procedure (its “torquability”). The springform wire reinforcement may extend the full length of the tube, or it may optionally terminate some distance short of the distal or proximal tip. The reinforcement 112 may be encapsulated within the overtube's wall in a thermopolymer or thermoset polymer matrix. The overtube is designed to be compliant and flexible, enabling it to follow the contours and navigate around features of the patient's anatomy, and is capable of conforming to curves with a radius of curvature of at least 1.5 in.
  • The tube 110 may also incorporate a thin woven mesh, encapsulated within the compliant material as described above, either in conjunction with the springform wire 112 or in lieu of such a wire. The woven mesh may be made of stainless steel, for instance, or aluminum, or any of a variety of polymeric materials. The purpose of embedding mesh within the tube is to substantially increase its torquability while having a minimal effect on its resistance to bending or its minimum radius of curvature.
  • The outer surface of the insertable length of the overtube should be sufficiently lubricious to allow for its introduction into the esophagus and subsequent manipulations (further insertion or withdrawal, rotation), and/or be compatible with lubricants commonly used in such procedures. The inner surfaces of the overtube's insertable length should also be sufficiently lubricious to accommodate the insertion of instruments and devices, and/or be compatible with lubricants typically used in such applications. In order to achieve sufficient lubricity, inherently lubricious materials may be selected (e.g., PTFE), or coatings may be applied to base materials (e.g., hydrophilic or hydrophobic coatings). Features that prevent locking or binding between components may also be incorporated, such as serrations or surface features similar to those seen on knives designed for slicing meat. Such features facilitate sliding, rather than binding, when elements are moved relative to one another.
  • The tube 110 may include a single or large central lumen 114 a as shown in FIGS. 7A and 7B, or multiple smaller lumens 114 b as in FIG. 7C. Additionally, the tube may incorporate numerous channels 114 c completely or partially within the wall. (FIG. 7B). In this way, it comprises a multi-lumen tube, with at least one large central lumen whose primary purpose is facilitating the introduction of instruments and devices to the stomach, and at least one much smaller lumen, through which control cables, fluids, etc. may be routed between the proximal and distal end of the device, or to intermediate points between the ends. In this way, the device presents a single, smooth outer surface to the patient, rather than having any ancillary elements separate from the overtube's insertable section itself in contact with a patient's gastrointestinal tract tissue. This provides protection for the components that may be routed within these lumens, and increases control of cleanliness and thus device function, as well as reduction of requirements for biocompatibility. In some cases, the small channels or lumens 114 c within the wall of the overtube may serve more than one purpose: for example, the compressive housing of a Bowden cable may be unnecessary when the control cable is routed within one of the small lumens in the overtube itself, eliminating a component and simplifying the design. For reference, a Bowden cable is comprised of an inner control cable which is housed in an outer housing designed to withstand compressive loads, often a coil tube. Displacements at the proximal end of the inner cable relative to the coil tube housing of a Bowden cable are transmitted to the distal end of the inner cable, and can be used as an actuator to create useful forces and motion relative to the cable housing.
  • The construction of the overtube may also be such that it may be expanded as necessary after it has been placed within a patient's anatomy. In the event that large instruments or devices are to be inserted through the overtube into the stomach, it may be beneficial to allow the overtube to expand to accommodate such large components that may otherwise fit too tightly or not at all, and to then return to its unexpanded diameter following passage of the large device. This is illustrated in FIG. 4A. One means of accomplishing this is to form the reinforcing wire rings 112 a or coil used to support the overtube structure into elliptical shapes, rather than a circular profile. Such rings could also be encapsulated within a thermopolymer or thermoset polymer matrix, as described above. If the elliptical reinforcing rings are tilted in aspect ratio, as shown in FIG. 4B, the cross sectional shape of the overtube's insertable length is circular under normal circumstances. However, when a large instrument is inserted into the overtube's central lumen to the stomach, the elliptical reinforcing rings comprising the overtube's structural supports can change aspect to present a larger cross sectional area, thus allowing the large instrument to pass through. FIG. 4C shows another embodiment, which relies upon support rings 112 b which are not continuous closed forms, but rather are partial rings which have a shape resembling the letter “C”. The shape of the partially ring can optionally be in a closed default configuration to resemble the letter “O”, with the ends of the ring touching or overlapping, which then dilate and open a gap when expansion forces are applied. Alternatively, more than one wire shape 112 c can be combined to create a structure which spans the full circumference of the tube (FIG. 4D). In cases where the ends of the wire endpoints overlap, a fold 116 may be introduced in the thermopolymer or thermoset polymer matrix encapsulating the support to facilitate such dilation (FIG. 4D).
  • One means of manufacturing the insertable length of the overtube assembly as described (with reinforcing elements encapsulated within a matrix) is to start with a wire 112 which is coated with a thermopolymer 113. This wire may be coiled around a mandrel 118 having the desired outer diameter or profile (the mandrel's outer diameter need not be consistent). This is depicted in FIG. 5A Heat shrink 120 may then be placed over the entire wound wire and mandrel 118 and heat applied, for example with a heat gun 122 or hot box, causing the heat shrink to relax over the wire (FIG. 5B). With the appropriate amount of heat addition, the heat shrink material and any coatings on the wire core will then flow around and encapsulate the wire 112 (FIG. 5C). Once the wire and thermopolymer assembly is complete, the supporting mandrel 118 may be removed, leaving a flexible, hollow tube. The same technique can be performed with a wire mesh in addition to the coil of wire, or instead of the coil of wire. The pitch of the wire wound around the mandrel 118 may also be varied prior to the application of heat shrink. This may be accomplished by alternating thermoplastic elements that have no wire core between windings 113 of those that have the wire core 112, as shown in FIG. 6A. After the application of heat and the flow of the thermopolymer, this results in differences in the space between each turn of wire, affecting the overall pitch (FIG. 6B). The profile of the thermopolymer elements that have no wire core may be round, square, rectangular, or any other desired shape, and the wire 112 need not be originally coated with thermoplastic, nor are they necessarily the same size (FIG. 6C). The cross sectional area of the thermopolymer-only elements need not have the same cross-sectional area as those containing wire (FIG. 6D).
  • Another means of manufacturing the insertable length of the overtube is to wrap at least one layer of a thin rolled sheet 120 a around a mandrel 118, and then fuse the layers together using heat, adhesives or chemical means. This is shown in FIG. 7. Reinforcing elements, e.g., wire and/or mesh, may be incorporated underneath, in between or on top of the rolled sheets in order to create an overtube with encapsulated support elements.
  • Bougie at Distal End
  • The distal tip may maintain the same outer diameter (herinafter “OD”), inner diameter (hereinafter “ID”) and wall thickness as the rest of the tube, or it may taper slightly to form a gentle curve. When an optional taper is incorporated into the distal tip, this serves to facilitate introduction into a patient's gastrointestinal tract, as well as helping to prevent tissue from being drawn into, and potentially pinched between, the overtube and any loose fitting components inserted into its inner lumen. As illustrated in the embodiments of FIGS. 8 and 8A, the distal end of the overtube 100 may be used in combination with a Bougie 124 attached to the distal tip of instruments, such as a flexible endoscope 126 for visualization, inserted to the distal end of the overtube. For reference, a Bougie is a smooth bullet-shaped leading tip that facilitates introduction into a lumen. The Bougie OD should be sized such that it creates a snug fit with the ID of the overtube's distal end.
  • Alternatively the overtube may be inserted over a guide wire 128 (FIG. 8B); the guidewire inserted under direct visualization using an endoscope. A transition member 130 is positioned between the inside diameter of the overtube and the outside diameter of the guidewire providing for a smooth transition. This transition member preferably includes a long taper, and is composed of a soft, flexible material such as silicone. As shown in FIG. 8A, a similar transition member may be used in place of the Bougie of FIG. 8.
  • An alternate means of achieving a gently curved leading edge is by means of a protective, thin walled umbrella-like cap 132 positioned at the distal end of the overtube. During insertion, the umbrella is positioned so that it fits snugly over the distal opening of the overtube, maintaining a dome shape and creating the gently curved bullet shape that facilitates insertion and prevents damage to tissue (FIG. 9A). When the desired insertion depth has been achieved with the overtube, the umbrella may be removed by either pulling it back using an element such as a wire 134 or cable and thus inverting it so that it fits into the overtube's lumen (FIG. 9B), or by pushing it forward with an element such as a wire 134 or cable from the distal end of the overtube, causing the umbrella to close before withdrawing it through the overtube (FIG. 9C).
  • Expandable Elements
  • FIG. 10 illustrates how the distal end of the overtube assembly 100 may optionally include attachments or features, such as an array 136 of spreadable fingers 138. Such an expandable element can be used to push the stomach wall away from the overtube, expanding and increasing the amount of space available within the stomach to perform a procedure. An overtube may incorporate or omit such expanders. The benefits of increasing the volume within the stomach include improvements in the ability to introduce and manipulate tools, improvements in the ability to locate plications and staples, improved ability to deploy implantable devices and improved visualization. Essentially, there is more room to work, and this simplifies many of the tasks. In addition to increasing the volume within the stomach, the expanders may be used to reshape the stomach in a way that facilitates the performance of the procedure. For instance, when the expander is at least partially expanded, the overtube may be pulled back slightly to pull up on the LES and reshape the stomach from its normal dome-like shape into something more resembling a cone. During introduction of the overtube into the esophagus, the expander is preferably in its fully retracted state, so that it presents a smooth cone shape that facilitates insertion. Once the desired location has been reached with the distal end of the overtube (e.g., once past the LES), the expander may be caused to open partially or fully to increase the available working volume and reshape the stomach as desired. Expansion of such elements also serves to help position and support the distal end of the overtube relative to the stomach, stabilizing it and helping it maintain position.
  • FIG. 11 shows one embodiment of the expandable elements, in the form of spreadable fingers 138. The position of the fingers may be adjusted and maintained anywhere between a fully closed position (FIG. 11A) and a fully expanded position (FIG. 11B). In this embodiment, this motion is created by changing the relative position of two control rings 140, 142 by means of at least one actuator, for example a Bowden cable. In the illustrated embodiment, movement of ring 140 pivots a hinge 144 coupled to fingers 138. At least part of the more distal control ring 140 may be sized slightly smaller than the more proximal control ring 142 so that it fits or nests at least partially within the proximal control ring 142. During introduction of the overtube into the esophagus, the fingers are preferably in their fully retracted state, so that they present a smooth Bougie-like leading edge that facilitates insertion (FIG. 11A). Once in the desired location, the fingers may be expanded partially or fully to increase the available working volume and reshape the stomach (FIG. 11B). The fingers may be left in this position for the duration of the procedure, or they may be adjusted at any time as desired by the user.
  • An additional embodiment of spreadable fingers is shown in FIG. 12. This version of the expandable element again incorporates two control rings, one distal 140 a and one proximal 140 b. However, this design differs in that the spreadable fingers do not reach forward (more distal) of the distal control ring when they are fully retracted. Rather, these spreadable fingers include a hinge 146 at or near the midpoint so that they form a link located between the control rings, in effect forming a tube-like, scaffold structure. Like the embodiment described in the previous paragraph and depicted in FIG. 11, pulling the distal control ring 140 a towards the proximal control ring 140 b causes the fingers to spread and deploy. The rings may be approximated by any number of actuator types, such as the pullwires/Bowden cables 148 depicted in FIG. 12 which can be used to draw the rings 140 a, 140 b together, such as by drawing the distal ring 140 a towards the proximal ring 142 a. At least one Bowden cable may be used, however using two or more Bowden cables allows for balancing the actuation forces more evenly around the control ring. FIG. 12A shows this version of the spreadable fingers in its fully retracted position, FIG. 12B shows it partially expanded, and FIG. 12C shows it fully extended. The control rings may optionally incorporate features that mate when the fingers are fully deployed to provide a positive stop when the full range of motion has been achieved.
  • Another embodiment of a mechanism that may be used to control the degree of expansion of such spreadable fingers employs a Bowden cable attached at the distal end to each finger in order to determine its position. When tension is applied to each Bowden cable, either separately or simultaneously, the corresponding finger moves radially outward, creating a larger working space.
  • In cases where an array of spreadable fingers are used to create the expandable element, such as that shown in FIG. 11, these fingers may also be used to maintain orientation during a procedure. Because the image from an endoscope may be rotated and may change unpredictably during the course of a procedure, features that aid in determining location and orientation are helpful. Using landmarks such as the spreadable fingers, especially when they have been individually identified, e.g., with color codes or other markings, aids in determining position of instruments and visualization components. They are especially useful for determining angular position, or “clocking”.
  • In addition to facilitating introduction of the overtube and enabling users to increase the working volume and reshape the stomach during a procedure, the expandable elements, such as the fingers described above and in FIG. 11, may serve as attachment points for a variety of additional devices. In one case, they may have pads 150 attached at their distal ends that increase the surface area they present to the stomach wall when deployed, resulting in a more desirable distribution of forces and a more desirable shape (FIG. 13A). In another case, the pads 150 a may be shaped to form a cone when the expandable elements are retracted to their closed position, facilitating introduction of the overtube into the patient (FIG. 13B). In another case, the pads may be configured to form suction cups 150 b, which may be applied to the stomach wall and fixed in place when suction is supplied (FIG. 13C). The use of suction immobilizes the stomach tissue relative to the distal end of the overtube. In another case the pads may have a deployable implant 152, such as the restrictor discussed above, temporarily mounted that, from this lead position at the distal tip of the overtube, may be delivered to one or more desired sites (FIG. 13D). Expansion of the fingers may then be used to deploy the implant within the stomach.
  • One embodiment of a mechanism that may be used to control the degree of spread of such expandable fingers, or any other embodiment that may be effectively controlled by means of Bowden cables 148, is shown in FIG. 14. This control handle serves to adjust the position of an inner control cable relative to an outer compressive housing of a Bowden cable 148. To accomplish this, an outer cup 154 is used in conjunction with a slidable plate 156. The slidable plate 156 is threaded, and acts like a nut when used in combination with a thumbscrew 158, which moves the slidable plate 156 towards or away from the outer cup 154 when it is turned. The thickness of the slidable plate and the clearance between its outer edge and the inside edge of the outer cup serve to keep the slidable plate aligned and prevent it from binding within the cup as it moves. Binding and misalignment may be further prevented via the addition of alignment slots 160, mated to pins 162 that protrude from the slidable plate. The controller may act on at least one Bowden cable, and the cables may be, but are not necessarily, centered or balanced with respect to the slidable plate. Adjustment of the Bowden cable may be accomplished with a barrel adjuster, or similar component. If a barrel adjuster is used, it may be comprised primarily of a screw which has a hole drilled through its central axis. The Bowden cable's compressive housing terminates against the screw head while the inner control cables runs through the screw. When the screw is inserted into a threaded hole, and the cable is attached to a component (such as the slidable plate shown in FIG. 14), the relative positions of the inner cable and outer compressive housing are adjusted.
  • When retraction of the expandable elements is desired, it may be advantageous or required, depending on the construction, to incorporate components within the mechanism of the expanders to ensure that they reliably retract. For instance, in cases where Bowden cables are used to actuate an expandable element, friction between the control cable and the compressive housing may prevent the expandable element from returning to a retracted position. For the embodiment shown in FIG. 11, this may be accomplished by means of a compression spring that pushes the two control rings apart. Alternately, nitinol spring elements may be incorporated to act upon the outer face of each of the fingers when they are extended, so that they push the fingers back to the retracted position when tension is removed from the Bowden cable that pulls the control rings together.
  • An alternate embodiment of an expandable element located at the distal end of the overtube or on a separate elongate member passed through the overtube, is shown in FIG. 15. In this embodiment, a fully expanded pair of hoops are comprised of numerous piecewise sections 166 which have central tensioning cables 168 running through their centers. When the tensioning cables are relaxed, the hoop sections are free to move relative to each other, and the result is a flexible chain of short elements. This configuration is well suited for insertion of the device through the overtube. When the tensioning cable is placed in tension, the hoop sections are forced to join together and organize into a shape that creates additional volume within the stomach, such as the hoops, or globe, shape shown. In this example, a hoop shape is depicted, however other shapes are possible and may be desirable, such as triangles, squares, umbrellas, etc.
  • Articulatable Section
  • At least one articulatable, lockable section may optionally be incorporated within the insertable length of the overtube. FIG. 16 shows a version of the overtube that incorporates such an articulatable length, labeled 103. The purpose of the articulatable section is to facilitate positional control of instruments and devices inserted through the lumen defined by the overtube. For instance, an articulatable section may be steered (caused to bend at a desirable angle and direction), to impart a “hockey stick” shape to the insertable length of the overtube. Additionally, the shape of the articulatable section may be locked in place by immobilizing or otherwise constraining the actuating elements that determine its shape. The simplest embodiments of the overtube may incorporate no such articulating section, being comprised entirely of a passive tube, as described above and depicted in FIG. 3. However, at least one articulatable section may be incorporated in such a way that it is coaxial and continuous with other passive, non-articulatable sections of the overtube. The articulatable section(s) have an OD, ID and wall thickness similar, but not necessarily equal, to those of the passive overtube sections. FIG. 16 shows the configuration of the articulatable section(s), which may be located at the distal end of the overtube, such that the section 108 has minimal length or zero length. Alternately, the articulatable sections may be located between passive sections of the overtube, such that the length of sections labeled 108 and 102 are non-zero. Similarly, the articulating section may be located at the proximal end of the overtube so that the length of the passive section 102 has minimal or zero length. In cases where more than one articulating section is incorporated, they may be located in any of the positions defined above, and they may be located next to each other or separated by passive sections. The preferred number of articulating sections is either zero or one, and the preferred location of the articulating section is near the distal end of the overtube, such that the length of the passive section 108 is between 0-6 in.
  • Steering Controls
  • Steering control of the articulatable section may be achieved by a variety of methods. The preferred method is to control articulation with at least one pull cable, such as a Bowden cable, acting within a coil tube compression housing. A single such control cable can be used to control the shape of the articulatable section in one direction (e.g., to the right), or a single cable can be used in combination with an opposing spring element to cause articulation in two directions (e.g., the spring pulls to the left and the cable pulls to the right). Alternately, two control cables can be used to control articulation in two directions (e.g., left and right). Extending this further, three control cables can be used in combination to allow for articulation in all directions (e.g., left, right, up and down), or four control cables can be used, each directly controlling bending of the articulatable section in each direction. The use of four control cables is the preferred method, as the resulting control is simple and intuitive for the user.
  • The control cables may be used to steer, or determine the curvature of, the articulating section of the overtube. FIG. 22 shows an example where two control cables are used to control the articulation angle Θ of a distal articulatable section in two directions, up (U) and down (D). The coil tube housings associated with the control cables are routed from a rotating control knob 170 located at the proximal end of the overtube assembly, down the length of the overtube to the junction between the length of passive overtube 102 and the articulatable section 103 controlled by the knob 170. Rotating the control knob in one direction results in one control cable being pulled in and an opposing control cable being spooled out. Similarly, rotating the control knob in the opposite direction reverses these motions. The resulting motion and forces are transmitted down the length of the control cables and compression housings to the articulatable length of overtube, and determine the major (inner) and minor (outer) arc lengths of the articulating section. As an example, FIG. 22 illustrates the case where the control knob is rotated clockwise by the user. This results in the upper control cable 172 being pulled relative to its compression coil tube housing 174, and this defines the minor arc length (l) along the top edge of the articulating length. Simultaneously, the rotation of the knob 170 releases tension on and feeds out the bottom control cable 176 relative to its corresponding compression coil tube housing 178, defining the major arc length (L) along the bottom edge of the articulating section. Variations of this design may incorporate four control cables, each determining the bending of the articulatable section in a different direction, such as left, right, up and down. For this case, two knobs are used. One knob controls one pair of control cables, e.g., the left-right pair, and the other knob controls the other pair of control cables, e.g., the up-down pair. The steering control knobs may optionally be oriented so that their position relates to the direction of steering they control. For example, when two knobs are used with one knob controlling left-right bending and the other knob controlling the up-down bending, the knobs may be rotated relative to one another by 90°. Further, the knobs may be oriented so that the position of the knob controlling bending in the left-right directions is horizontal and the position of the knob controlling bending in the up-down directions is vertical.
  • The length of each of the Bowden cables is critical to their correct performance, and for this reason elements that facilitate their adjustment are helpful. Even in cases where they have been cut to the exact length required and perfectly installed, cables typically stretch over time and use, and will require periodic adjustment. For this reason, the control knob assemblies may incorporate a number of means of cable adjustment. One useful characteristic of a control knob is to incorporate a means to deal individually with each control cable that terminates there. For instance, if the control knob determines the shape of the articulatable section in the left-right direction, the cable controlling bending to the left can be managed and kept separate and adjusted independently of the cable controlling bending to the right. This may be accomplished by incorporating two completely separate sections 170 a, 170 b of the control knob, one for each terminating control cable, as illustrated in FIG. 23. In this figure, the 2-part spool is indicated with the reference numerals 171 a, 171 b. Coarse cable adjustment can be provided by incorporating a multitude of attachment points between the knob described in the paragraph above and the Bowden cable. The spool around which the control cable is wound requires a single potential attachment point, such as a pin, for a control cable, however if multiple potential attachment points are provided, the length of the cable may be adjusted relative to the position of the spool and knob. The example shown in FIG. 24A has potential attachment point 173 spaced every 15°, however this spacing may be any useful interval. The route of the control cable wire to the control knob termination point is preferably but not necessarily smooth, so that it does not present any hard corners or sharp edges to the cable, extending its operating life. Fine cable adjustment may be accomplished with the addition of a barrel adjuster or similar element. In the case of a barrel adjuster, a screw is drilled through its central axis, and the cable's compressive housing terminates against the screw head while the inner control cable runs through the screw. When the screw is inserted into a threaded hole 182, and the cable is attached to a component (such as the spool shown in FIG. 24A), the relative positions of the inner cable and outer compressive housing may be adjusted by the position of the screw. Turning the screw so that it moves towards the cable's termination point (e.g., clockwise for right-handed threads) loosens the cable. Conversely, turning the screw so that it moves away from the cable's termination point (e.g., counter-clockwise for right-handed threads) tightens the cable. This is depicted in FIG. 24B.
  • Control of an articulating section may also be achieved by means other than Bowden cables. Any appropriate alternate actuation method and energy source may be used, such as hydraulic or pneumatic actuators, which could be used to create the motion and forces needed to bend the articulatable section.
  • Articulatable Section Construction
  • The articulatable sections may be constructed using a variety of techniques. One simple embodiment consists of a single coil spring element 112 capable of bending as desired, and is shown in FIG. 17A. The proximal 184 and distal 186 ends of the spring are fitted with end caps 188 that provide termination points for actuating elements (described below) and mounting features for attaching them to other parts of the overtube's insertable length. Additional features may be useful for routing components that traverse through the articulatable section, such as Bowden cables running between the user controls at the proximal end and the expandable elements at the distal tip. The spring element 112 may have significant space between the coil windings so that it bends freely when a moment is applied between the distal and proximal ends without changing length significantly. To cause the spring to articulate, a Bowden cable may be used, attached across one side of the outside of the spring element. If the Bowden cable's compressive housing terminates at the proximal end cap 188 a of the spring element, and the control cable terminates at the distal end cap 188 b of the spring element, pulling on the cable relative to the compressive housing results in the spring bending in the direction of the cable, as shown in FIG. 17B. A backbone 190 extending through the overtube prevents collapse of the spring during bending. Bending the spring element in other directions is achievable by attaching additional Bowden cables in other locations around the outside of the spring element. A benefit of this construction is that the spring element comprising the articulatable section returns to a straight shape when tension is released from the control cables: its relaxed configuration is straight. The spring element comprising the articulatable section of this construction may be created by attaching a separate spring to passive sections of the overtube to create the full insertable length of the overtube, or it may be formed from the same materials used as the supporting structure of the passive sections of the insertable overtube. This can be accomplished by altering the winding pitch and/or the diameter locally, if needed, where the articulatable section is required.
  • An alternative means of constructing an articulatable section is to create it by stringing together on cables 194 a succession of rings shaped in such a way that they are allowed to rock relative to one another. The rocking motion can again be controlled through the use of Bowden cables. This construction technique is illustrated in FIG. 18A through D. The shape of each ring is such that it forms an inner lumen, and is preferably (but not necessarily) round. The inner radius r is sized so that it is approximately the same as the inner radius of the rest of the insertable length of the overtube. The outer radius R and the wall thickness T are equal to or as close as possible to the outer radius of the rest of the insertable length of the overtube. Four small through holes are drilled through each ring's wall parallel to the central axis of the overtube, at the 3, 6, 9 and 12 o'clock positions. These holes accept the control cables 194, which run through each ring and hold the assembly together. When viewed from the side, as shown in FIG. 18A, each ring is flat along the bottom surface and has two aligned raised arches along the top surface. In the figure, these are shown in the 12 and 6 o'clock orientation. The raised sections are oriented so that their peaks are coincident with the small holes drilled through the wall. To assemble the articulatable section, a number of rings are strung together using control cables 194. At the distal end of the assembly of rings, each cable is terminated, e.g., with a crimp 196. At the proximal end of the assembly of rings, each compressive housing is terminated. When sufficient tension is applied to a control cable, it will pull back and move into its compressive housing, and the corresponding side of the distal end of the assembly of rings is pulled towards the proximal end. The cables themselves constrain the relative motion of the rings so that the result is piecewise bending. This is shown in FIG. 18B and FIG. 18D. The rings are prevented from sliding relative to each other and losing organization by the cables that connect them. Such rings may be comprised of any of a variety of materials that possess adequate strength, however stainless steel or polycarbonate are preferred.
  • The arrangement of the rings relative to each other in the assembly determines whether bending in two directions results (e.g., left and right) or whether bending in four directions (e.g., left, right, up and down) is allowed. FIGS. 18A and B show the construction that results in articulation in two directions (left and right). For this construction, the raised portions of each of the rings are all oriented similarly, e.g., from the 12 o'clock position to 6 o'clock position. When control cables are actuated at the 3 o'clock position or the 9 o'clock position, the assembly is caused to rock in the direction of the cable under tension. For this construction, all of the rings contribute to the bending of the assembly. The other two cables (at 12 o'clock and 6 o'clock) are always held at a fixed length and pretension, and applying further tension to them would not result in bending the articulatable section. Instead, these cables serve primarily to string the rings together and stabilize the assembly. They may terminate immediately at the proximal end of the articulatable section, without the use of compressive housings, or they may optionally extend back to the proximal controls.
  • FIGS. 18C and D show a variation of the construction that enables the assembly of rings to articulate in four directions (left, right, up and down). For this construction, the raised portions of each of the rings are alternated, rotated 90° between successive rings. When any of the four control cables is actuated, or combinations of control cables, the assembly is caused to rock in the direction of the cable(s) under tension. For this construction, each ring contributes to the bending of the assembly in two of the four possible directions, such as the left and right pair. Every other ring contributes bending in the left-right directions, alternating with rings that contribute bending in the up-down directions. FIG. 18D illustrates the contributions of each of the rings in the assembly when a single cable is pulled.
  • These stacked ring embodiments of the articulatable section may also be used to construct unarticulatable sections. Such sections are flexible, but their articulation is not selectable or controllable by a user. When this approach is used, the entire length of the overtube may be constructed using a continuous assembly of rings, oriented in at least one of the ways described above. The shape of at least one region of the assembly may be controllable (e.g., articulatable or steerable) via Bowden cables, as described, while the remaining regions of the assembly which are not controllable have no Bowden cables determining their shape.
  • Another embodiment of an articulatable section is shown in FIG. 19. In this version, rings 198 that are joined with hinge joints 200 are combined to form an assembly that may be caused to articulate in a desired direction by means of an actuator that pulls differentially in a given direction, such as a Bowden cable. The orientation of successive hinges may alternate in increments of 90° as shown, which enables bending in four directions (e.g., left, right, up and down), or all hinges may be aligned in the same orientation, which will allow for bending in two directions (e.g., left and right). As with the previously described embodiment, the balance of the insertable length of the overtube may also optionally be made using this construction. A single section, multiple sections, or no section may then optionally be made articulatable by means of actuators such as Bowden cables.
  • Regardless of the construction of the articulatable section, it may have either a continuous outer sheath 202 or surface, a continuous inner sheath 204 or surface, or both (e.g., sheaths positioned over the inner and outer surfaces of the articulating rings, coil or other articulating features, or an encapsulation/positioning of such articulating features within the walls of a sheath). This is shown in FIG. 20. The material used to create the sheath preferably offers little resistance to the bending of the articulatable section. For this reason, soft materials, such as a low durometer, thin wall urethane, silicone or similar material are preferred. The overtube's terminating end piece provides an air tight seal against devices inserted through the inner lumen for the purpose of facilitating and maintaining insufflation of the stomach during a procedure, and if the overtube is not a continuously sealed tube along its insertable length, air leaks are likely to occur. Insufflation facilitates visualization and access by increasing the volume of the stomach where the procedure is performed, and when insufflation is not adequate, the procedure may be negatively impacted.
  • Components may be added to or incorporated within the overtube to provide tactile feedback to users when instruments within the overtube's inner lumen are moved. For example, elements may be used that provide the sensation of indexing, such as a ratcheting feel of engagement and disengagement, when an instrument is inserted into the overtube to specific depth intervals, or rotated relative to the overtube 100 at angular intervals. One embodiment of such a feature makes use of magnetic interactions. If at least one magnet 206 or magnetically attractive element is incorporated into the overtube, and a corresponding magnet 208 or magnetically attractive element is incorporated into an instrument 210 that moves relative to the overtube, the elements will attract or repel each other as they move into and out of proximity. This is illustrated in FIG. 21. These forces may be useful to the user to indicate that a location of interest has been achieved, or that a certain increment of motion has occurred. Another embodiment of such a feature involves a ball detent, mounted either in the overtube or in an insertable instrument that indexes against indentations in a mating surface. The indentations may be either circular or elongate in shape.
  • Depth and Angle Markings
  • The proximal end of the overtube may incorporate graduated markings indicating depth and radial angle (FIG. 25). The depth markings 212 a enable users to quantitatively track and control the depth of insertion of the overtube into the patient, as well as the depth of insertion of instruments, tools and devices into the overtube. The radial angular markings 212 b similarly enable users to quantitatively track and control the angular position (also called “clocking”) of the overtube and the instruments, tools and devices inserted into the overtube. The depth and angle markings also enable users to repeatedly return an instrument or device to a previously achieved location when required. Additionally, the depth and angle markings enable users to reposition instruments and devices at a known location relative to a previously achieved location. For example, if a physician wishes to create a new stapled mounting point in the stomach wall at a location 90° clockwise and at an equivalent distance from the LES relative to a previously placed stapled mounting, he or she would ensure that the overtube was inserted to the same depth and angular position into the patient for both sequences of operations, that the instruments used were inserted into the overtube at the same depth, and that the instruments were rotated 90° clockwise as indicated on the overtube's angular markings.
  • Color Coding to Indicate Orientation
  • The angular markings at the proximal end of the overtube may be further identified by means of color coding (FIG. 26). For instance, the quadrant from 0° to 90° may be indicated with the color green (G), the quadrant from 90° to 180° with red (R), 180° to 270° with blue (B), and 270° to 0° with no color (NC) added. These color codings may be coordinated with similar markings at the distal end of the overtube 110 which will be visualized with an endoscope. This improves the ability of the user to maintain proper orientation and obtain the desired result when manipulating instruments at the proximal end of the overtube, since it directly corresponds to what he or she observes visually at the distal end of the overtube. The color coding at the distal end of the overtube may be applied anywhere that may be visualized by an endoscope placed inserted through the inner lumen, such as to the overtube itself (including passive and/or articulatable sections), or to components attached to and extending beyond the distal end of the overtube. For instance, expandable elements such as spreadable fingers may be added to the end of the overtube which may each be a unique color. Alternately, components may be extended from the distal end of the overtube for the express purpose of placing color coded markings within the field of view of the endoscope (FIG. 27). These forward-extending components may be of any useful shape, e.g., a tubular antenna, or a garden-hoe-like flag.
  • The steering controls that determine the angle and direction of the articulatable section may also be marked to correspond to the markings on components at the distal end of the overtube. If, for instance, the spreadable finger located at the top of the overtube (at the 12 o'clock position) is red, the control knob that determines the up-down position of the articulatable section will have a red marking on it indicating which direction it should be turned to cause the articulatable section to bend in the up direction. Similarly, if the spreadable finger located at the bottom of the overtube (at the 6 o'clock position) is blue, then markings on the same knob will incorporate an indication of which direction it should be turned to cause the articulatable section to bend down. This may be done, for example, by marking the knobs with different color arrows.
  • In addition to indicating which direction to turn each knob to achieve the desired bend angle with the articulatable section, each knob may be marked with an indication of when the articulatable section is approximately straight. A marking indicating the “neutral” position of the articulatable section allows a user to straighten the articulatable section with high confidence, rather than relying on “feel” or for the articulatable section to return to a straight configuration if tension is released on the controlling Bowden cables.
  • A positive retention force and tactile feedback may also be provided in the steering control knobs by incorporating ball detent components and a sequence of mating indentations. When a user turns a steering control knob, the ball detents can prevent the knob from turning freely, thus preventing the articulatable section from unintentionally returning to its relaxed neutral position. The indexing that occurs as the ball detent moves through the succession of indentations may also provide useful tactile feedback to the user, indicating increments of rotation of a knob and/or certain positions of the articulatable section, such as straight or neutral.
  • Terminating End Ring
  • The proximal end of the overtube incorporates a terminating end ring (FIG. 28). The end ring is attached to, and is not free to move relative to, the insertable length of the overtube. The end ring incorporates at least one sealing feature for the purpose of creating and maintaining an air-tight seal against components inserted into its inner lumen. When insufflation or suction is applied through the overtube or by instruments passing within the overtube, this seal prevents flow between the inside and the outside of a patient. The sealing feature may take the form of at least one o-ring, but preferably two o-rings. Additionally, the end ring incorporates a port for the introduction of insufflation. This port accepts tubing through which insufflation air may flow. Optionally, a clamp valve may be installed over the insufflation tubing to control the flow of air, or the flow may be controlled by means of turning the insufflation pump on and off.
  • Fixturing Ring
  • Over the terminating end ring, a fixturing ring 220 (FIG. 29) may be fitted that facilitates attachment to a clamping or fixturing device, such as an iron intern. For this reason, this device may also be referred to as an “iron intern ring”. The iron intern ring fits loosely over the terminating end ring, so that it is possible to rotate them relative to each other. The fixturing ring also incorporates at least one tensioning element that, when active, immobilizes the terminating end ring relative to the fixturing ring. This tensioning element may be embodied, for example, by at least one screw 222 that, when tightened, locks the terminating end ring relative to the iron intern ring, preventing rotation and axial motion. Preferably, more than one screw is used to distribute the clamping load. For example, three clamping screws are shown in FIG. 29. This screw may also incorporate features that facilitate frequent adjustment without requiring the use of tools. For instance, large knobs may be located on the screw heads to enable users to tighten and loosen them by hand. The iron intern ring is also the mounting point for elements of the overall device that are inconvenient to rotate in the event that the insertable length of the overtube is torqued. This includes the steering controls for the articulatable, lockable section of the overtube and the position control from the expandable elements, such as the embodiment shown in FIG. 14. In one embodiment, the steering controls (e.g., left-right control 226 and up-down control 228) and the expandable element controller 230 are incorporated into a single component, and this component is attached to the iron intern ring (FIG. 30).
  • An overtube may be packaged alone or as a system in combination with related components such as staplers and implants of the type referenced in the application, as well as any combination of the following: Bougies, transition members, guidewires, endoscopes etc. The system might further include instructions for use instructing a user to employ the system in accordance with the methods disclosed herein.
  • As is apparent from the forgoing disclosure, in some embodiments described above, the overtube comprises an articulating section, an actuator for effecting articulation of the articulating section, and an optional locking mechanism allowing the articulating section to be locked in a desired position. In other embodiments described above, the overtube comprises an elongate tube having one or more retraction elements on its distal end, allowing the overtube to create working space within the body (e.g., stomach) while giving access to instruments passed through its lumen.
  • It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. The applications and methods listed are not limited to the treatment of diseases or procedures listed. Modifications of the above described methods and tools and variations of this invention that are obvious to those of skill in the art are intended to be within the scope of this disclosure. Moreover, the disclosed embodiments may be combined with one another in varying ways to produce additional embodiments.
  • Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.

Claims (51)

1. An endogastric overtube for use in a stomach of a patient, comprising:
a flexible elongate tube having a proximal end and a distal end, the tube proportioned such that when the distal end is in the stomach, the proximal end is positioned outside the patient, the tube including at least one lumen extending from the proximal end to the distal end, the tube having a maximum outer diameter of at least approximately 10 mm; and
a control cable extending through a wall of the tube, the control cable coupled to a distal portion of the tube such that engagement of the control cable causes deflection of the distal portion.
2. The endogastric overtube of claim 1, wherein the tube further includes a reinforcement on a distal portion of the tube.
3. The endogastric overtube of claim 2, wherein the tube is a formed of polymeric material and wherein the reinforcement is embedded within the polymeric material.
4. The endogastric overtube of claim 2, wherein the tube is a formed of polymeric material and wherein the reinforcement is positioned on an inner surface of the lumen or an outer surface of the tube.
5. The endogastric overtube of claim 2, wherein the reinforcement is a resilient coil.
6. The endogastric overtube of claim 2, wherein the reinforcement is at least one resilient ring.
7. The endogastric overtube of claim 2, wherein the reinforcement is at least one partial ring.
8. The endogastric overtube of claim 6, wherein the resilient ring is circular.
9. The endogastric overtube of claim 6, wherein the resilient ring is elliptical.
10. The endogastric overtube of claim 2, wherein the reinforcement includes a mesh element.
11. The endogastric overtube of claim 2, wherein the lumen has a diameter, and wherein the tube is expandable from a first position to a second position in response to introduction of an instrument having a diameter exceeding the lumen diameter into the lumen, and wherein the reinforcement is configured to restore the tube to the first position upon removal of the instrument from the lumen.
12. The endogastric tube of claim 1, further including a removable atraumatic tip on the distal end.
13. The endogastric tube of claim 12, wherein the atraumatic tip is positioned on an elongate member extending through the lumen.
14. The endogastric tube of claim 12, wherein the atraumatic tip is a cap at least partially covering the distal end of the tip.
15. The endogastric tube of claim 12, wherein the elongate element is retractable in a proximal direction to invert the cap into the lumen.
16. The endogastric tube of claim 12, wherein the elongate element is advanceable in a distal direction to collapse the cap into a collapsed position, and wherein the elongate element is retractactable to withdraw the cap in the collapsed position through the lumen.
17. The endogastric tube of claim 5, wherein the control cable is coupled to the spring element.
18. The endogastric tube of claim 1, further including a retractor element on the distal end of the tube, the retractor element moveable from a first position to a second position in which the retractor element extends laterally from the tube.
19. The endogastric tube of claim 18, wherein the retractor element extends longitudinally when in the first position.
20. The endogastric tube of claim 18, wherein the retractor element includes a first portion coupled to a first ring and a second portion coupled to a second ring, and wherein relative movement of the second ring towards the first ring moves the retractor element from the first position to the second position.
21. The endogastric tube of claim 20, wherein the retractor element includes a hinge, and wherein the first portion and the second portion are on opposite sides of the hinge.
22. The endogastric tube of claim 20, wherein the first portion is an elongate member, and wherein the second portion is a pivot element pivotably coupled between the elongate member and the second ring.
23. The endogastric tube of claim 18 wherein the retractor element includes a mount for receiving an implant to be implanted in the stomach.
24. The endogastric tube of claim 1, further including a retractor element on the distal end of the tube, the retractor element including a plurality of segments and a cable extending between the segments, the retractor having a first, flexible, position and a second, more rigid, position, the cable retractable to move the retractor from the first to the second position.
25. The endogastric tube of claim 24, wherein the segments are positioned on a cable loop and wherein the retractor element in the second position forms a retractor hoop.
26. The endogastric tube of claim 25, further including a second retractor element including a plurality of second segments and a second cable extending between the segments, the second cable retractable to move the second retractor from a flexible position to a more rigid position.
27. The endogastric tube of claim 26, wherein the second retractor in the second position forms a retractor hoop.
28. The endogastric tube of claim 1, wherein the tube includes a seal positioned to seal against an instrument inserted into the lumen.
29. The endogastric tube of claim 1, wherein the proximal portion of the tube includes a port positionable in fluid communication with a source of insufflation gas.
30. The endogastric tube of claim 1, wherein the tube has a maximum outer diameter of between approximately 10 mm-20 mm.
31. The endogastric tube of claim 30, wherein the tube has a maximum out diameter of between approximately 15 mm-20 mm.
32. The endogastric tube of claim 30, wherein the tube has a maximum outer diameter of approximately 20 mm.
33. The endogastric tube of claim 1, wherein the tube has a maximum outer diameter of approximately 18-22 mm.
34. The endogastric tube of claim 1, wherein the tube has a maximum wall thickness of 0.1-0.2 mm.
35. An endogastric overtube for use in a stomach of a patient, comprising:
a flexible elongate tube having a proximal end and a distal end, the tube proportioned such that when the distal end is in the stomach, the proximal end is positioned outside the patient, the tube including at least one lumen extending from the proximal end to the distal end, the tube having a maximum outer diameter of at least approximately 10 mm; and
a retractor element on the distal end of the tube, the retractor element moveable from a first position to a second position in which the retractor element extends laterally from the tube.
36. The endogastric tube of claim 35, wherein the retractor element extends longitudinally when in the first position.
37. The endogastric tube of claim 35, wherein the retractor element includes a first portion coupled to a first ring and a second portion coupled to a second ring, and wherein relative movement of the second ring towards the first ring moves the retractor element from the first position to the second position.
38. The endogastric tube of claim 37, wherein the retractor element includes a hinge, and wherein the first portion and the second portion are on opposite sides of the hinge.
39. The endogastric tube of claim 37, wherein the first portion is an elongate member, and wherein the second portion is a pivot element pivotably coupled between the elongate member and the second ring.
40. The endogastric tube of claim 37, wherein the retractor element includes a mount for receiving an implant to be implanted in the stomach.
41. The endogastric tube of claim 35, further including a retractor element on the distal end of the tube, the retractor element including a plurality of segments and a cable extending between the segments, the retractor having a first, flexible, position and a second, more rigid, position, the cable retractable to move the retractor from the first to the second position.
42. The endogastric tube of claim 41, wherein the segments are positioned on a cable loop and wherein the retractor element in the second position forms a retractor hoop.
43. The endogastric tube of claim 42, further including a second retractor element including a plurality of second segments and a second cable extending between the segments, the second cable retractable to move the second retractor from a flexible position to a more rigid position.
44. The endogastric tube of claim 43, wherein the second retractor in the second position forms a retractor hoop.
45. The endogastric tube of claim 35, wherein the tube includes a seal positioned to seal against an instrument inserted into the lumen.
46. The endogastric tube of claim 35, wherein the proximal portion of the tube includes a port positionable in fluid communication with a source of insufflation gas.
47. The endogastric tube of claim 35, wherein the tube has a maximum outer diameter of between approximately 10 mm-20 mm.
48. The endogastric tube of claim 47, wherein the tube has a maximum out diameter of between approximately 15 mm-20 mm.
49. The endogastric tube of claim 35, wherein the tube has a maximum outer diameter of approximately 20 mm.
50. The endogastric tube of claim 35, wherein the tube has a maximum outer diameter of approximately 18-22 mm.
51. The endogastric tube of claim 35, wherein the tube has a maximum wall thickness of 0.1-0.2 mm.
US12/175,274 2007-07-18 2008-07-17 Overtube introducer for use in endoscopic bariatric surgery Abandoned US20090030284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/175,274 US20090030284A1 (en) 2007-07-18 2008-07-17 Overtube introducer for use in endoscopic bariatric surgery
US13/964,890 US9545249B2 (en) 2007-07-18 2013-08-12 Overtube introducer for use in endoscopic bariatric surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95058407P 2007-07-18 2007-07-18
US12/175,274 US20090030284A1 (en) 2007-07-18 2008-07-17 Overtube introducer for use in endoscopic bariatric surgery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/964,890 Continuation US9545249B2 (en) 2007-07-18 2013-08-12 Overtube introducer for use in endoscopic bariatric surgery

Publications (1)

Publication Number Publication Date
US20090030284A1 true US20090030284A1 (en) 2009-01-29

Family

ID=39791305

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/175,274 Abandoned US20090030284A1 (en) 2007-07-18 2008-07-17 Overtube introducer for use in endoscopic bariatric surgery
US13/964,890 Expired - Fee Related US9545249B2 (en) 2007-07-18 2013-08-12 Overtube introducer for use in endoscopic bariatric surgery

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/964,890 Expired - Fee Related US9545249B2 (en) 2007-07-18 2013-08-12 Overtube introducer for use in endoscopic bariatric surgery

Country Status (2)

Country Link
US (2) US20090030284A1 (en)
WO (1) WO2009011881A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190989A1 (en) * 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US20080195226A1 (en) * 2006-09-02 2008-08-14 Williams Michael S Intestinal sleeves and associated deployment systems and methods
US20080294179A1 (en) * 2007-05-12 2008-11-27 Balbierz Daniel J Devices and methods for stomach partitioning
US20090024143A1 (en) * 2007-07-18 2009-01-22 Crews Samuel T Endoscopic implant system and method
US20090125040A1 (en) * 2006-09-13 2009-05-14 Hambly Pablo R Tissue acquisition devices and methods
US20090236390A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US20100016988A1 (en) * 2001-08-27 2010-01-21 Stack Richard S Satiation devices and methods
US20100241146A1 (en) * 2003-10-10 2010-09-23 Stack Richard S Devices and methods for retaining a gastro-esophageal implant
US20100276469A1 (en) * 2009-05-01 2010-11-04 Barosense, Inc. Plication tagging device and method
US20100280529A1 (en) * 2009-05-04 2010-11-04 Barosense, Inc. Endoscopic implant system and method
US20110004060A1 (en) * 2009-02-09 2011-01-06 Olympus Medical Systems Corp. Medical tube
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US20110153030A1 (en) * 2001-08-27 2011-06-23 Synecor, Llc Positioning tools and methods for implanting medical devices
US8029455B2 (en) 2003-01-16 2011-10-04 Barosense, Inc. Satiation pouches and methods of use
US8241202B2 (en) 2004-04-26 2012-08-14 Barosense, Inc. Restrictive and/or obstructive implant for inducing weight loss
US8337566B2 (en) 2002-04-08 2012-12-25 Barosense, Inc. Method and apparatus for modifying the exit orifice of a satiation pouch
US8469977B2 (en) 2005-10-03 2013-06-25 Barosense, Inc. Endoscopic plication device and method
US20130237768A1 (en) * 2010-07-05 2013-09-12 Virtual Ports Ltd. Internal retractor
US9107727B2 (en) 2001-08-27 2015-08-18 Boston Scientific Scimed, Inc. Satiation devices and methods
US20150265141A1 (en) * 2012-10-25 2015-09-24 Era Endoscopy S.R.L. Flexible and extensible tubular guide and manufacture process thereof
US9314361B2 (en) 2006-09-15 2016-04-19 Boston Scientific Scimed, Inc. System and method for anchoring stomach implant
US9345435B1 (en) 2014-01-26 2016-05-24 Cesar Del Aguila Esophageal introducer
US9445791B2 (en) 2003-10-10 2016-09-20 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US9545249B2 (en) 2007-07-18 2017-01-17 Boston Scientific Scimed, Inc. Overtube introducer for use in endoscopic bariatric surgery
US20170156889A1 (en) * 2013-12-23 2017-06-08 Jmea Corporation Devices And Methods For Preparation Of Vertebral Members
CN107635455A (en) * 2015-04-03 2018-01-26 格勒诺布尔-阿尔卑斯大学 Implantable intestines reactor
CN109602386A (en) * 2019-02-15 2019-04-12 沈阳智能机器人国家研究院有限公司 A kind of illumination laparoscope and its control method
US11950778B2 (en) 2020-08-11 2024-04-09 Boston Scientific Scimed, Inc. Tissue-acquisition and fastening devices and methods

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060844B2 (en) 2002-11-01 2015-06-23 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
WO2005110280A2 (en) 2004-05-07 2005-11-24 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US20090171383A1 (en) 2007-12-31 2009-07-02 David Cole Gastric space occupier systems and methods of use
US9278019B2 (en) 2009-04-03 2016-03-08 Metamodix, Inc Anchors and methods for intestinal bypass sleeves
US9173760B2 (en) 2009-04-03 2015-11-03 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
CA2756991A1 (en) 2009-04-03 2010-10-07 Metamodix, Inc. Modular gastrointestinal prostheses
AU2010271294B2 (en) 2009-07-10 2015-09-03 Metamodix, Inc. External anchoring configurations for modular gastrointestinal prostheses
US11877722B2 (en) 2009-12-15 2024-01-23 Cornell University Method and apparatus for manipulating the side wall of a body lumen or body cavity
DK2575590T4 (en) 2010-05-25 2019-02-11 Arc Medical Design Ltd COVER FOR A MEDICAL SHOPPING DEVICE
US9681975B2 (en) 2012-05-31 2017-06-20 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9451960B2 (en) 2012-05-31 2016-09-27 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9050168B2 (en) 2012-05-31 2015-06-09 Valentx, Inc. Devices and methods for gastrointestinal bypass
EP2945566A4 (en) 2013-01-15 2016-10-26 Metamodix Inc System and method for affecting intestinal microbial flora
US9757264B2 (en) 2013-03-13 2017-09-12 Valentx, Inc. Devices and methods for gastrointestinal bypass
US11633093B2 (en) 2014-08-08 2023-04-25 Wm & Dg, Inc. Medical devices and methods of placement
US11147442B2 (en) * 2014-08-08 2021-10-19 Wm & Dg, Inc. Medical devices and methods of placement
US9622897B1 (en) 2016-03-03 2017-04-18 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
GB201608380D0 (en) 2016-05-12 2016-06-29 Arc Medical Design Ltd Medical scope accessory, medical scopes comprising the accessory, and use thereof
DE202017007388U1 (en) 2016-05-19 2021-02-12 Metamodix, Inc. Tools for pyloric anchor recovery
US11051682B2 (en) 2017-08-31 2021-07-06 Wm & Dg, Inc. Medical devices with camera and methods of placement
US20210393114A1 (en) * 2020-06-23 2021-12-23 Lumendi Ltd. Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1408865A (en) * 1921-07-13 1922-03-07 Selden S Cowell Collapsible funnel
US3663965A (en) * 1970-06-08 1972-05-23 Henry L Lee Jr Bacteria-resistant percutaneous conduit device
US4246893A (en) * 1978-07-05 1981-01-27 Daniel Berson Inflatable gastric device for treating obesity
US4315509A (en) * 1977-01-10 1982-02-16 Smit Julie A Insertion and removal catheters and intestinal tubes for restricting absorption
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US4501264A (en) * 1978-06-02 1985-02-26 Rockey Arthur G Medical sleeve
US4648383A (en) * 1985-01-11 1987-03-10 Angelchik Jean P Peroral apparatus for morbid obesity treatment
US4723547A (en) * 1985-05-07 1988-02-09 C. R. Bard, Inc. Anti-obesity balloon placement system
US4747849A (en) * 1986-01-13 1988-05-31 Claude Galtier Oesophagus prosthesis
US4899747A (en) * 1981-12-10 1990-02-13 Garren Lloyd R Method and appartus for treating obesity
US4997084A (en) * 1988-05-13 1991-03-05 Opielab, Inc. Packaging system for disposable endoscope sheaths
US5088979A (en) * 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5211658A (en) * 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5290217A (en) * 1991-10-10 1994-03-01 Earl K. Sipes Method and apparatus for hernia repair
US5306300A (en) * 1992-09-22 1994-04-26 Berry H Lee Tubular digestive screen
US5314473A (en) * 1989-07-20 1994-05-24 Godin Norman J Prosthesis for preventing gastric reflux into the esophagus
US5401241A (en) * 1992-05-07 1995-03-28 Inamed Development Co. Duodenal intubation catheter
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5484694A (en) * 1994-11-21 1996-01-16 Eastman Kodak Company Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US5514074A (en) * 1993-02-12 1996-05-07 Olympus Optical Co., Ltd. Endoscope apparatus of an endoscope cover system for preventing buckling of an endoscope cover
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
US5709657A (en) * 1989-06-28 1998-01-20 Zimmon Science Corporation Methods for placement of balloon tamponade devices
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5749918A (en) * 1995-07-20 1998-05-12 Endotex Interventional Systems, Inc. Intraluminal graft and method for inserting the same
US5771903A (en) * 1995-09-22 1998-06-30 Kirk Promotions Limited Surgical method for reducing the food intake of a patient
US5856445A (en) * 1996-10-18 1999-01-05 Washington University Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator
US5861036A (en) * 1995-03-28 1999-01-19 Biomedix S.A. Switzerland Medical prosthesis for preventing gastric reflux in the esophagus
US5868141A (en) * 1997-05-14 1999-02-09 Ellias; Yakub A. Endoscopic stomach insert for treating obesity and method for use
US5887594A (en) * 1997-09-22 1999-03-30 Beth Israel Deaconess Medical Center Inc. Methods and devices for gastroesophageal reflux reduction
US5897562A (en) * 1994-10-02 1999-04-27 United States Surgical Corporation Non-invasive apparatus for treatment of gastroesophageal reflux disease
US5910144A (en) * 1998-01-09 1999-06-08 Endovascular Technologies, Inc. Prosthesis gripping system and method
US6016848A (en) * 1996-07-16 2000-01-25 W. L. Gore & Associates, Inc. Fluoropolymer tubes and methods of making same
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US6197022B1 (en) * 1996-07-30 2001-03-06 James A. Baker Medical instruments and techniques for treatment of gastro-esophageal reflux disease
US6206930B1 (en) * 1998-08-10 2001-03-27 Charlotte-Mecklenburg Hospital Authority Absorbable tissue expander
US6245088B1 (en) * 1997-07-07 2001-06-12 Samuel R. Lowery Retrievable umbrella sieve and method of use
US6251132B1 (en) * 1993-05-20 2001-06-26 Boston Scientific Corporation Prosthesis delivery
US6358197B1 (en) * 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US20020055757A1 (en) * 2000-11-03 2002-05-09 Torre Roger De La Method and device for use in minimally invasive placement of intragastric devices
US20020072791A1 (en) * 2000-12-07 2002-06-13 Eder Joseph C. Light-activated multi-point detachment mechanism
US20020082621A1 (en) * 2000-09-22 2002-06-27 Schurr Marc O. Methods and devices for folding and securing tissue
US6503264B1 (en) * 2000-03-03 2003-01-07 Bioenterics Corporation Endoscopic device for removing an intragastric balloon
US6506196B1 (en) * 1999-06-22 2003-01-14 Ndo Surgical, Inc. Device and method for correction of a painful body defect
US20030040808A1 (en) * 2001-08-27 2003-02-27 Stack Richard S. Satiation devices and methods
US6540789B1 (en) * 2000-06-15 2003-04-01 Scimed Life Systems, Inc. Method for treating morbid obesity
US20030065359A1 (en) * 2001-05-30 2003-04-03 Gary Weller Overtube apparatus for insertion into a body
US6544291B2 (en) * 1997-12-09 2003-04-08 Thomas V. Taylor Sutureless gastroesophageal anti-reflux valve prosthesis and tool for peroral implantation thereof
US6547801B1 (en) * 1998-09-14 2003-04-15 Sofradim Production Gastric constriction device
US6558400B2 (en) * 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US20030093117A1 (en) * 1999-06-25 2003-05-15 Vahid Saadat Implantable artificial partition and methods of use
US6572627B2 (en) * 2001-01-08 2003-06-03 Shlomo Gabbay System to inhibit and/or control expansion of anatomical features
US6572629B2 (en) * 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US20030120289A1 (en) * 2001-12-20 2003-06-26 Mcguckin James F Apparatus and method for treating gastroesophageal reflux disease
US20040006351A1 (en) * 2002-07-02 2004-01-08 Jamy Gannoe Method and device for use in tissue approximation and fixation
US6675809B2 (en) * 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US20040044364A1 (en) * 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US20040044354A1 (en) * 2002-08-30 2004-03-04 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US20040044357A1 (en) * 2002-08-30 2004-03-04 James Gannoe Stented anchoring of gastric space-occupying devices
US20040044353A1 (en) * 2002-08-30 2004-03-04 James Gannoe Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US20040082963A1 (en) * 2002-10-23 2004-04-29 Jamy Gannoe Method and device for use in endoscopic organ procedures
US20040088023A1 (en) * 2001-05-01 2004-05-06 Imran Mir A. Gastric treatment and diagnosis device and method
US20040092974A1 (en) * 2002-10-23 2004-05-13 Jamy Gannoe Method and device for use in endoscopic organ procedures
US20040093091A1 (en) * 2002-08-07 2004-05-13 Jamy Gannoe Intra-gastric fastening devices
US20040092892A1 (en) * 2002-11-01 2004-05-13 Jonathan Kagan Apparatus and methods for treatment of morbid obesity
US20040098043A1 (en) * 2002-07-09 2004-05-20 Trout Hugh H. Delivery apparatus for use during a surgical procedure and method of using the same
US6740121B2 (en) * 2001-11-09 2004-05-25 Boston Scientific Corporation Intragastric stent for duodenum bypass
US20050049718A1 (en) * 2002-11-01 2005-03-03 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US20050055365A1 (en) * 2003-09-09 2005-03-10 I.V. Ramakrishnan Scalable data extraction techniques for transforming electronic documents into queriable archives
US20050065397A1 (en) * 2003-01-15 2005-03-24 Usgi Medical Inc. Endoluminal tool deployment system
US20050075654A1 (en) * 2003-10-06 2005-04-07 Brian Kelleher Methods and devices for soft tissue securement
US20050085787A1 (en) * 2003-10-17 2005-04-21 Laufer Michael D. Minimally invasive gastrointestinal bypass
US20050096673A1 (en) * 2003-10-10 2005-05-05 Stack Richard S. Devices and methods for retaining a gastro-esophageal implant
US7020531B1 (en) * 2001-05-01 2006-03-28 Intrapace, Inc. Gastric device and suction assisted method for implanting a device on a stomach wall
US7025791B2 (en) * 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US7037344B2 (en) * 2002-11-01 2006-05-02 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US20060106288A1 (en) * 2004-11-17 2006-05-18 Roth Alex T Remote tissue retraction device
US20070032800A1 (en) * 2005-08-05 2007-02-08 Ortiz Mark S Apparatus for single pass gastric restriction
US7175638B2 (en) * 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
US20070043384A1 (en) * 2005-08-18 2007-02-22 Ortiz Mark S Method and apparatus for endoscopically performing gastric reduction surgery in a single pass
US20070055292A1 (en) * 2005-09-02 2007-03-08 Ortiz Mark S Method and apparatus for endoscopically performing gastric reduction surgery in a single step
US7335210B2 (en) * 2002-04-03 2008-02-26 Julie Ann Smit Endoscope and tools for applying sealants and adhesives and intestinal lining for reducing food absorption
US20080065122A1 (en) * 2003-10-10 2008-03-13 Stack Richard S Restrictive and/or obstructive implant system for inducing weight loss
US20090024143A1 (en) * 2007-07-18 2009-01-22 Crews Samuel T Endoscopic implant system and method
US20090125040A1 (en) * 2006-09-13 2009-05-14 Hambly Pablo R Tissue acquisition devices and methods

Family Cites Families (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207890A (en) 1977-01-04 1980-06-17 Mcneilab, Inc. Drug-dispensing device and method
US4134405A (en) 1977-01-10 1979-01-16 Smit Julie A Catheter and intestine tube and method of using the same
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4467804A (en) 1980-10-20 1984-08-28 American Cyanamid Company Anastomotic device
US4417360A (en) 1981-07-31 1983-11-29 Manoutchehr Moasser Nontraumatic prosthetic valve with magnetic closure
US4416267A (en) 1981-12-10 1983-11-22 Garren Lloyd R Method and apparatus for treating obesity
US4403604A (en) 1982-05-13 1983-09-13 Wilkinson Lawrence H Gastric pouch
US4485805A (en) 1982-08-24 1984-12-04 Gunther Pacific Limited Of Hong Kong Weight loss device and method
US4607618A (en) 1983-02-23 1986-08-26 Angelchik Jean P Method for treatment of morbid obesity
GB8422863D0 (en) 1984-09-11 1984-10-17 Univ London Sewing machine
US4694827A (en) 1986-01-14 1987-09-22 Weiner Brian C Inflatable gastric device for treating obesity and method of using the same
SE453258B (en) 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
US4848367A (en) 1987-02-11 1989-07-18 Odis L. Avant Method of effecting dorsal vein ligation
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US5084061A (en) 1987-09-25 1992-01-28 Gau Fred C Intragastric balloon with improved valve locating means
US4925446A (en) 1988-07-06 1990-05-15 Transpharm Group Inc. Removable inflatable intragastrointestinal device for delivering beneficial agents
US4846836A (en) 1988-10-03 1989-07-11 Reich Jonathan D Artificial lower gastrointestinal valve
US4946440A (en) 1988-10-05 1990-08-07 Hall John E Evertible membrane catheter and method of use
US4969896A (en) 1989-02-01 1990-11-13 Interpore International Vascular graft prosthesis and method of making the same
US5431673A (en) 1989-02-17 1995-07-11 American Biomed, Inc. Distal atherectomy catheter
CH680263A5 (en) 1989-07-20 1992-07-31 Norman Godin
US5454365A (en) * 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5006106A (en) 1990-10-09 1991-04-09 Angelchik Jean P Apparatus and method for laparoscopic implantation of anti-reflux prosthesis
US5231989A (en) * 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
US5234454A (en) 1991-08-05 1993-08-10 Akron City Hospital Percutaneous intragastric balloon catheter and method for controlling body weight therewith
US5662713A (en) 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5259399A (en) 1992-03-02 1993-11-09 Alan Brown Device and method of causing weight loss using removable variable volume intragastric bladder
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5246456A (en) 1992-06-08 1993-09-21 Wilkinson Lawrence H Fenestrated gastric pouch
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5327914A (en) 1992-09-02 1994-07-12 Shlain Leonard M Method and devices for use in surgical gastroplastic procedure
US5345949A (en) 1992-09-02 1994-09-13 Shlain Leonard M Methods for use in surgical gastroplastic procedure
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
DE4236210C1 (en) 1992-10-27 1994-04-14 Olympus Optical Europ Tubular implant for use in percutaneous feeding
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5653743A (en) 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
CA2213403C (en) 1995-02-22 2007-01-16 Menlo Care, Inc. Covered expanding mesh stent
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
US5839639A (en) 1995-08-17 1998-11-24 Lasersurge, Inc. Collapsible anvil assembly and applicator instrument
US6102922A (en) 1995-09-22 2000-08-15 Kirk Promotions Limited Surgical method and device for reducing the food intake of patient
DE69526857T2 (en) 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent for use in one pass
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5846251A (en) * 1996-07-22 1998-12-08 Hart; Charles C. Access device with expandable containment member
US5800514A (en) 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US5976158A (en) 1997-06-02 1999-11-02 Boston Scientific Corporation Method of using a textured ligating band
US5848964A (en) 1997-06-06 1998-12-15 Samuels; Shaun Lawrence Wilkie Temporary inflatable filter device and method of use
EP0891752B1 (en) 1997-07-17 2005-01-12 Schneider (Europe) GmbH Stent and method for manufacturing such a stent
DE19731834A1 (en) 1997-07-24 1999-06-17 Ernst Peter Prof Dr M Strecker Implantation device
US5820584A (en) 1997-08-28 1998-10-13 Crabb; Jerry A. Duodenal insert and method of use
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6120534A (en) 1997-10-29 2000-09-19 Ruiz; Carlos E. Endoluminal prosthesis having adjustable constriction
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US5993473A (en) 1997-11-19 1999-11-30 Chan; Yung C. Expandable body device for the gastric cavity and method
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US5947983A (en) 1998-03-16 1999-09-07 Boston Scientific Corporation Tissue cutting and stitching device and method
US6113609A (en) 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US6460543B1 (en) 1998-08-13 2002-10-08 Obtech Medical Ag Non-injection port food intake restriction device
AU6131499A (en) 1998-08-27 2000-03-21 Endonetics, Inc. Lower esophageal bulking device
US6264700B1 (en) 1998-08-27 2001-07-24 Endonetics, Inc. Prosthetic gastroesophageal valve
CA2338518C (en) 1998-08-31 2007-09-25 Wilson-Cook Medical Inc. Anti-reflux esophageal prosthesis
US6238335B1 (en) 1998-12-11 2001-05-29 Enteric Medical Technologies, Inc. Method for treating gastroesophageal reflux disease and apparatus for use therewith
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6159146A (en) 1999-03-12 2000-12-12 El Gazayerli; Mohamed Mounir Method and apparatus for minimally-invasive fundoplication
US6098629A (en) 1999-04-07 2000-08-08 Endonetics, Inc. Submucosal esophageal bulking device
AU5275600A (en) 1999-05-18 2000-12-05 Silhouette Medical Inc. Surgical weight control device
US6835200B2 (en) 1999-06-22 2004-12-28 Ndo Surgical. Inc. Method and devices for tissue reconfiguration
US6821285B2 (en) 1999-06-22 2004-11-23 Ndo Surgical, Inc. Tissue reconfiguration
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
WO2003099137A2 (en) 1999-06-22 2003-12-04 Ndo Surgical, Inc. Method and devices for tissue reconfiguration
US6663639B1 (en) 1999-06-22 2003-12-16 Ndo Surgical, Inc. Methods and devices for tissue reconfiguration
US8574243B2 (en) * 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US6245087B1 (en) 1999-08-03 2001-06-12 Embol-X, Inc. Variable expansion frame system for deploying medical devices and methods of use
MXPA02001217A (en) 1999-08-12 2004-05-21 Potencia Medical Ag Stoma opening forming apparatus.
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
FR2799118B1 (en) 1999-10-01 2002-07-12 Medical Innovation Dev ADJUSTABLE GASTRIC IMPLANT
IT1315260B1 (en) 1999-12-07 2003-02-03 Valerio Cigaina REMOVABLE GASTRIC BANDAGE
EP1108400A1 (en) 1999-12-13 2001-06-20 Biomedix S.A. Removable fixation apparatus for a prosthesis in a body vessel
US6547776B1 (en) 2000-01-03 2003-04-15 Curon Medical, Inc. Systems and methods for treating tissue in the crura
ATE410982T1 (en) 2000-02-10 2008-10-15 Obtech Medical Ag REGULATED DEVICE FOR THE TREATMENT OF HEARTBURN AND ACID REGULS
JP2003535621A (en) 2000-02-15 2003-12-02 イーバ コーポレイション Delivery catheter assembly and method for securing a surgical component to a blood vessel during a surgical procedure
MXPA00001922A (en) 2000-02-24 2002-03-08 De Hayos Garza Andres Percutaneous intra-gastric balloon catheter for obesity treatment.
EP1261282B1 (en) 2000-03-03 2013-09-25 C. R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
FR2805986B1 (en) 2000-03-13 2002-10-11 Districlass Madical INTRA-GASTRIC DEVICE WITH VARIABLE VOLUME
US6837846B2 (en) * 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
WO2001083017A1 (en) 2000-05-02 2001-11-08 Wilson-Cook Medical, Inc. Introducer device for catheters o.t.l. with eversible sleeve
US6592596B1 (en) 2000-05-10 2003-07-15 Scimed Life Systems, Inc. Devices and related methods for securing a tissue fold
EP1284661B1 (en) 2000-05-19 2013-08-14 C.R. Bard, Inc. Tissue capturing and suturing device
WO2002015796A2 (en) 2000-08-24 2002-02-28 Surgical Connections, Inc. Surgical stabilizer devices
US6932838B2 (en) 2000-09-29 2005-08-23 Tricardia, Llc Venous valvuloplasty device and method
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
US7229453B2 (en) 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
JP4202138B2 (en) 2001-01-31 2008-12-24 レックス メディカル インコーポレイテッド Apparatus and method for stapling and ablating gastroesophageal tissue
US7011094B2 (en) 2001-03-02 2006-03-14 Emphasys Medical, Inc. Bronchial flow control devices and methods of use
US6579302B2 (en) * 2001-03-06 2003-06-17 Cordis Corporation Total occlusion guidewire device
ATE293919T1 (en) 2001-03-09 2005-05-15 Alvarez Jose Rafael Garza INTRAGASTIC BALLOON ARRANGEMENT
US20050143760A1 (en) 2001-05-01 2005-06-30 Imran Mir A. Endoscopic gastric constriction device
CA2447377C (en) 2001-05-17 2008-11-25 Kiyoshi Hashiba Intragastric device for treating obesity
US6916332B2 (en) 2001-05-23 2005-07-12 Scimed Life Systems, Inc. Endoluminal fundoplication device and related method for installing tissue fastener
US6627206B2 (en) 2001-07-25 2003-09-30 Greg A. Lloyd Method and apparatus for treating obesity and for delivering time-released medicaments
US6632227B2 (en) 2001-08-24 2003-10-14 Scimed Life Systems, Inc. Endoscopic resection devices
US20040117031A1 (en) 2001-08-27 2004-06-17 Stack Richard S. Satiation devices and methods
US7097665B2 (en) 2003-01-16 2006-08-29 Synecor, Llc Positioning tools and methods for implanting medical devices
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US6755869B2 (en) 2001-11-09 2004-06-29 Boston Scientific Corporation Intragastric prosthesis for the treatment of morbid obesity
WO2003053289A1 (en) 2001-12-21 2003-07-03 Simcha Milo Implantation system for annuloplasty rings
US7146984B2 (en) 2002-04-08 2006-12-12 Synecor, Llc Method and apparatus for modifying the exit orifice of a satiation pouch
AU2003213058A1 (en) 2002-04-08 2003-10-27 Barosense, Inc. Satiation devices and methods
US8241308B2 (en) 2002-04-24 2012-08-14 Boston Scientific Scimed, Inc. Tissue fastening devices and processes that promote tissue adhesion
US6960233B1 (en) 2002-12-10 2005-11-01 Torax Medical, Inc. Methods and apparatus for improving the function of biological passages
WO2003094784A2 (en) 2002-05-07 2003-11-20 Ams Research Corporation Urethral prosthesis with tensioning member
US7316716B2 (en) 2002-05-09 2008-01-08 Gastrix Medical, Llc Gastric bypass prosthesis
DE60328476D1 (en) 2002-05-09 2009-09-03 Reshape Medical MEDICAL BALLOON SYSTEM FOR THE TREATMENT OF ADIPOSITAS
US6790214B2 (en) 2002-05-17 2004-09-14 Esophyx, Inc. Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method
US7211114B2 (en) 2002-08-26 2007-05-01 The Trustees Of Columbia University In The City Of New York Endoscopic gastric bypass
MXPA05002284A (en) 2002-08-29 2006-02-10 Mitralsolutions Inc Implantable devices for controlling the internal circumference of an anatomic orifice or lumen.
WO2004032760A2 (en) 2002-10-04 2004-04-22 Tyco Healthcare Group, Lp Pneumatic powered surgical stapling device
AU2003287436A1 (en) 2002-11-01 2004-06-07 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US7837669B2 (en) 2002-11-01 2010-11-23 Valentx, Inc. Devices and methods for endolumenal gastrointestinal bypass
US20090149871A9 (en) 2002-11-01 2009-06-11 Jonathan Kagan Devices and methods for treating morbid obesity
KR100954560B1 (en) 2003-01-10 2010-04-23 삼성전자주식회사 Method for recovering received data error in mobile communication system serving multimedia broadcast/multicast service
US20040249367A1 (en) * 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US20040143342A1 (en) 2003-01-16 2004-07-22 Stack Richard S. Satiation pouches and methods of use
US7291160B2 (en) 2003-03-17 2007-11-06 Delegge Rebecca Intragastric catheter
US6981980B2 (en) 2003-03-19 2006-01-03 Phagia Technology Self-inflating intragastric volume-occupying device
US20060058829A1 (en) 2003-03-19 2006-03-16 Sampson Douglas C Intragastric volume-occupying device
WO2004087014A2 (en) 2003-03-28 2004-10-14 Gi Dynamics, Inc. Anti-obesity devices
AU2004233848B2 (en) 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
US7731757B2 (en) 2003-06-01 2010-06-08 Reflux Corporation Obesity treatment
RU2006101219A (en) * 2003-06-16 2007-07-27 Этикон Эндо-Серджери, Инк. (Us) SURGICAL SYSTEM WITH TOOL FOR SUPPORTING BRACKETS
BR0302240B8 (en) 2003-06-24 2013-02-19 semi-stationary balloon in the gastric antrum with anchor rod for weight loss induction in humans.
KR20030068070A (en) 2003-06-26 2003-08-19 이정환 The method of endoscopic ballooning for the treatment of obesity
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US20050080444A1 (en) 2003-10-14 2005-04-14 Kraemer Stefan J.M. Transesophageal gastric reduction device, system and method
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7347863B2 (en) 2004-05-07 2008-03-25 Usgi Medical, Inc. Apparatus and methods for manipulating and securing tissue
US7147140B2 (en) 2003-12-30 2006-12-12 Ethicon Endo - Surgery, Inc. Cartridge retainer for a curved cutter stapler
CA2556228C (en) 2004-02-13 2014-05-13 Satiety, Inc. Methods for reducing hollow organ volume
US8147561B2 (en) 2004-02-26 2012-04-03 Endosphere, Inc. Methods and devices to curb appetite and/or reduce food intake
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US7255675B2 (en) 2004-03-23 2007-08-14 Michael Gertner Devices and methods to treat a patient
US20060195139A1 (en) 2004-03-23 2006-08-31 Michael Gertner Extragastric devices and methods for gastroplasty
WO2005096991A1 (en) 2004-04-06 2005-10-20 Medevert Limited Ureteric stents
EP1740132B1 (en) 2004-04-26 2014-12-31 Synecor, LLC Restrictive and/or obstructive implant for inducing weight loss
US20050267596A1 (en) 2004-05-03 2005-12-01 Fulfillium, Inc. A Delaware Corporation Devices and systems for gastric volume control
WO2005110280A2 (en) 2004-05-07 2005-11-24 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US7918869B2 (en) 2004-05-07 2011-04-05 Usgi Medical, Inc. Methods and apparatus for performing endoluminal gastroplasty
US7520884B2 (en) 2004-05-07 2009-04-21 Usgi Medical Inc. Methods for performing gastroplasty
US7112186B2 (en) 2004-05-26 2006-09-26 Shah Tilak M Gastro-occlusive device
US8475476B2 (en) * 2004-06-01 2013-07-02 Cook Medical Technologies Llc System and method for accessing a body cavity
US7803195B2 (en) 2004-06-03 2010-09-28 Mayo Foundation For Medical Education And Research Obesity treatment and device
ATE506042T1 (en) 2004-07-09 2011-05-15 Gi Dynamics Inc DEVICES FOR PLACEMENT OF A GASTROINTESTINAL SLEEVE
US20060155259A1 (en) 2005-01-13 2006-07-13 Maclay Alistair Stomach balloon that can be inserted and removed via mouth
US7674271B2 (en) 2005-05-04 2010-03-09 InTailor Surgical, Inc. Endoluminal gastric ring and method
ES2371035T3 (en) 2005-05-23 2011-12-26 Barosense, Inc. SYSTEM OF RESTRICTIVE AND OBSTRUCTION IMPLANTS TO INDUCE WEIGHT LOSS.
US8500756B2 (en) 2005-06-13 2013-08-06 Ethicon Endo. Surgery, Inc. Quick load mechanism for a surgical suturing apparatus
WO2007038336A2 (en) * 2005-09-23 2007-04-05 Ellipse Technologies, Inc. Method and apparatus for adjusting body lumens
US20080190989A1 (en) 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
ES2698848T3 (en) 2005-10-03 2019-02-06 Boston Scient Scimed Inc Endoscopic plication devices
US20070100369A1 (en) 2005-10-31 2007-05-03 Cragg Andrew H Intragastric space filler
EP1968506B1 (en) 2005-12-22 2011-09-14 Wilson-Cook Medical Inc. Coiled intragastric member for treating obesity
US8726909B2 (en) 2006-01-27 2014-05-20 Usgi Medical, Inc. Methods and apparatus for revision of obesity procedures
US20070191870A1 (en) 2006-02-10 2007-08-16 Endogastric Solutions, Inc. Transesophageal gastric reduction method and device for practicing same
US20070191871A1 (en) 2006-02-10 2007-08-16 Endogastric Solutions, Inc. Transesophageal gastric reduction method and device for reducing the size of a previously formed gastric reduction pouch
EP2572673B1 (en) 2006-09-02 2015-08-19 Boston Scientific Scimed, Inc. Intestinal sleeves and associated deployment systems and methods
WO2008033474A2 (en) 2006-09-15 2008-03-20 Synecor, Llc System for anchoring stomach implant
WO2008073852A2 (en) * 2006-12-08 2008-06-19 Onset Medical Corporation Expandable medical access sheath
US20080294179A1 (en) 2007-05-12 2008-11-27 Balbierz Daniel J Devices and methods for stomach partitioning
US20090030284A1 (en) 2007-07-18 2009-01-29 David Cole Overtube introducer for use in endoscopic bariatric surgery

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1408865A (en) * 1921-07-13 1922-03-07 Selden S Cowell Collapsible funnel
US3663965A (en) * 1970-06-08 1972-05-23 Henry L Lee Jr Bacteria-resistant percutaneous conduit device
US4315509A (en) * 1977-01-10 1982-02-16 Smit Julie A Insertion and removal catheters and intestinal tubes for restricting absorption
US4501264A (en) * 1978-06-02 1985-02-26 Rockey Arthur G Medical sleeve
US4641653A (en) * 1978-06-02 1987-02-10 Rockey Arthur G Medical sleeve
US4246893A (en) * 1978-07-05 1981-01-27 Daniel Berson Inflatable gastric device for treating obesity
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US4899747A (en) * 1981-12-10 1990-02-13 Garren Lloyd R Method and appartus for treating obesity
US4648383A (en) * 1985-01-11 1987-03-10 Angelchik Jean P Peroral apparatus for morbid obesity treatment
US4723547A (en) * 1985-05-07 1988-02-09 C. R. Bard, Inc. Anti-obesity balloon placement system
US4747849A (en) * 1986-01-13 1988-05-31 Claude Galtier Oesophagus prosthesis
US4997084A (en) * 1988-05-13 1991-03-05 Opielab, Inc. Packaging system for disposable endoscope sheaths
US5709657A (en) * 1989-06-28 1998-01-20 Zimmon Science Corporation Methods for placement of balloon tamponade devices
US5314473A (en) * 1989-07-20 1994-05-24 Godin Norman J Prosthesis for preventing gastric reflux into the esophagus
US5088979A (en) * 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5290217A (en) * 1991-10-10 1994-03-01 Earl K. Sipes Method and apparatus for hernia repair
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5211658A (en) * 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5401241A (en) * 1992-05-07 1995-03-28 Inamed Development Co. Duodenal intubation catheter
US5306300A (en) * 1992-09-22 1994-04-26 Berry H Lee Tubular digestive screen
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US5514074A (en) * 1993-02-12 1996-05-07 Olympus Optical Co., Ltd. Endoscope apparatus of an endoscope cover system for preventing buckling of an endoscope cover
US6251132B1 (en) * 1993-05-20 2001-06-26 Boston Scientific Corporation Prosthesis delivery
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5897562A (en) * 1994-10-02 1999-04-27 United States Surgical Corporation Non-invasive apparatus for treatment of gastroesophageal reflux disease
US5484694A (en) * 1994-11-21 1996-01-16 Eastman Kodak Company Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US5861036A (en) * 1995-03-28 1999-01-19 Biomedix S.A. Switzerland Medical prosthesis for preventing gastric reflux in the esophagus
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
US5749918A (en) * 1995-07-20 1998-05-12 Endotex Interventional Systems, Inc. Intraluminal graft and method for inserting the same
US5771903A (en) * 1995-09-22 1998-06-30 Kirk Promotions Limited Surgical method for reducing the food intake of a patient
US6016848A (en) * 1996-07-16 2000-01-25 W. L. Gore & Associates, Inc. Fluoropolymer tubes and methods of making same
US6197022B1 (en) * 1996-07-30 2001-03-06 James A. Baker Medical instruments and techniques for treatment of gastro-esophageal reflux disease
US5856445A (en) * 1996-10-18 1999-01-05 Washington University Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US5868141A (en) * 1997-05-14 1999-02-09 Ellias; Yakub A. Endoscopic stomach insert for treating obesity and method for use
US6245088B1 (en) * 1997-07-07 2001-06-12 Samuel R. Lowery Retrievable umbrella sieve and method of use
US5887594A (en) * 1997-09-22 1999-03-30 Beth Israel Deaconess Medical Center Inc. Methods and devices for gastroesophageal reflux reduction
US6558429B2 (en) * 1997-12-09 2003-05-06 Reflux Corporation Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6544291B2 (en) * 1997-12-09 2003-04-08 Thomas V. Taylor Sutureless gastroesophageal anti-reflux valve prosthesis and tool for peroral implantation thereof
US5910144A (en) * 1998-01-09 1999-06-08 Endovascular Technologies, Inc. Prosthesis gripping system and method
US6206930B1 (en) * 1998-08-10 2001-03-27 Charlotte-Mecklenburg Hospital Authority Absorbable tissue expander
US6547801B1 (en) * 1998-09-14 2003-04-15 Sofradim Production Gastric constriction device
US6506196B1 (en) * 1999-06-22 2003-01-14 Ndo Surgical, Inc. Device and method for correction of a painful body defect
US20030093117A1 (en) * 1999-06-25 2003-05-15 Vahid Saadat Implantable artificial partition and methods of use
US6358197B1 (en) * 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US6503264B1 (en) * 2000-03-03 2003-01-07 Bioenterics Corporation Endoscopic device for removing an intragastric balloon
US6540789B1 (en) * 2000-06-15 2003-04-01 Scimed Life Systems, Inc. Method for treating morbid obesity
US6572629B2 (en) * 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US20020082621A1 (en) * 2000-09-22 2002-06-27 Schurr Marc O. Methods and devices for folding and securing tissue
US20020055757A1 (en) * 2000-11-03 2002-05-09 Torre Roger De La Method and device for use in minimally invasive placement of intragastric devices
US20020072791A1 (en) * 2000-12-07 2002-06-13 Eder Joseph C. Light-activated multi-point detachment mechanism
US6572627B2 (en) * 2001-01-08 2003-06-03 Shlomo Gabbay System to inhibit and/or control expansion of anatomical features
US20040088023A1 (en) * 2001-05-01 2004-05-06 Imran Mir A. Gastric treatment and diagnosis device and method
US7020531B1 (en) * 2001-05-01 2006-03-28 Intrapace, Inc. Gastric device and suction assisted method for implanting a device on a stomach wall
US20030065359A1 (en) * 2001-05-30 2003-04-03 Gary Weller Overtube apparatus for insertion into a body
US6558400B2 (en) * 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US20030109892A1 (en) * 2001-05-30 2003-06-12 Deem Mark E. Obesity treatment tools and methods
US6845776B2 (en) * 2001-08-27 2005-01-25 Richard S. Stack Satiation devices and methods
US20030040808A1 (en) * 2001-08-27 2003-02-27 Stack Richard S. Satiation devices and methods
US6675809B2 (en) * 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US7354454B2 (en) * 2001-08-27 2008-04-08 Synecor, Llc Satiation devices and methods
US6740121B2 (en) * 2001-11-09 2004-05-25 Boston Scientific Corporation Intragastric stent for duodenum bypass
US20030120289A1 (en) * 2001-12-20 2003-06-26 Mcguckin James F Apparatus and method for treating gastroesophageal reflux disease
US7335210B2 (en) * 2002-04-03 2008-02-26 Julie Ann Smit Endoscope and tools for applying sealants and adhesives and intestinal lining for reducing food absorption
US20040006351A1 (en) * 2002-07-02 2004-01-08 Jamy Gannoe Method and device for use in tissue approximation and fixation
US20040098043A1 (en) * 2002-07-09 2004-05-20 Trout Hugh H. Delivery apparatus for use during a surgical procedure and method of using the same
US20040093091A1 (en) * 2002-08-07 2004-05-13 Jamy Gannoe Intra-gastric fastening devices
US6994715B2 (en) * 2002-08-07 2006-02-07 Satiety, Inc. Intra-gastric fastening devices
US20040044364A1 (en) * 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US20040044353A1 (en) * 2002-08-30 2004-03-04 James Gannoe Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US20040044354A1 (en) * 2002-08-30 2004-03-04 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US20040044357A1 (en) * 2002-08-30 2004-03-04 James Gannoe Stented anchoring of gastric space-occupying devices
US6981978B2 (en) * 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US20040082963A1 (en) * 2002-10-23 2004-04-29 Jamy Gannoe Method and device for use in endoscopic organ procedures
US20040092974A1 (en) * 2002-10-23 2004-05-13 Jamy Gannoe Method and device for use in endoscopic organ procedures
US7220237B2 (en) * 2002-10-23 2007-05-22 Satiety, Inc. Method and device for use in endoscopic organ procedures
US20040092892A1 (en) * 2002-11-01 2004-05-13 Jonathan Kagan Apparatus and methods for treatment of morbid obesity
US20050096750A1 (en) * 2002-11-01 2005-05-05 Jonathan Kagan Apparatus and methods for treatment of morbid obesity
US20050049718A1 (en) * 2002-11-01 2005-03-03 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US7037344B2 (en) * 2002-11-01 2006-05-02 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US7025791B2 (en) * 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US20050065397A1 (en) * 2003-01-15 2005-03-24 Usgi Medical Inc. Endoluminal tool deployment system
US7175638B2 (en) * 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
US20050055365A1 (en) * 2003-09-09 2005-03-10 I.V. Ramakrishnan Scalable data extraction techniques for transforming electronic documents into queriable archives
US20050075654A1 (en) * 2003-10-06 2005-04-07 Brian Kelleher Methods and devices for soft tissue securement
US20050096673A1 (en) * 2003-10-10 2005-05-05 Stack Richard S. Devices and methods for retaining a gastro-esophageal implant
US20080065122A1 (en) * 2003-10-10 2008-03-13 Stack Richard S Restrictive and/or obstructive implant system for inducing weight loss
US20050085787A1 (en) * 2003-10-17 2005-04-21 Laufer Michael D. Minimally invasive gastrointestinal bypass
US20060106288A1 (en) * 2004-11-17 2006-05-18 Roth Alex T Remote tissue retraction device
US20070032800A1 (en) * 2005-08-05 2007-02-08 Ortiz Mark S Apparatus for single pass gastric restriction
US20070043384A1 (en) * 2005-08-18 2007-02-22 Ortiz Mark S Method and apparatus for endoscopically performing gastric reduction surgery in a single pass
US20070055292A1 (en) * 2005-09-02 2007-03-08 Ortiz Mark S Method and apparatus for endoscopically performing gastric reduction surgery in a single step
US20090125040A1 (en) * 2006-09-13 2009-05-14 Hambly Pablo R Tissue acquisition devices and methods
US20090024143A1 (en) * 2007-07-18 2009-01-22 Crews Samuel T Endoscopic implant system and method

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992457B2 (en) 2001-08-27 2015-03-31 Boston Scientific Scimed, Inc. Gastrointestinal implants
US9872786B2 (en) 2001-08-27 2018-01-23 Boston Scientific Scimed, Inc. Gastro-esophageal implants
US8784354B2 (en) 2001-08-27 2014-07-22 Boston Scientific Scimed, Inc. Positioning tools and methods for implanting medical devices
US20110153030A1 (en) * 2001-08-27 2011-06-23 Synecor, Llc Positioning tools and methods for implanting medical devices
US8845753B2 (en) 2001-08-27 2014-09-30 Boston Scientific Scimed, Inc. Satiation devices and methods
US8568488B2 (en) 2001-08-27 2013-10-29 Boston Scientific Scimed, Inc. Satiation devices and methods
US10080677B2 (en) 2001-08-27 2018-09-25 Boston Scientific Scimed, Inc. Satiation devices and methods
US9254214B2 (en) 2001-08-27 2016-02-09 Boston Scientific Scimed, Inc. Satiation devices and methods
US9844453B2 (en) 2001-08-27 2017-12-19 Boston Scientific Scimed, Inc. Positioning tools and methods for implanting medical devices
US9788984B2 (en) 2001-08-27 2017-10-17 Boston Scientific Scimed, Inc. Satiation devices and methods
US9107727B2 (en) 2001-08-27 2015-08-18 Boston Scientific Scimed, Inc. Satiation devices and methods
US9138340B2 (en) 2001-08-27 2015-09-22 Boston Scientific Scimed, Inc. Gastro-esophageal implants
US20100016988A1 (en) * 2001-08-27 2010-01-21 Stack Richard S Satiation devices and methods
US20100298631A1 (en) * 2001-08-27 2010-11-25 Stack Richard S Satiation devices and methods
US9358144B2 (en) 2001-08-27 2016-06-07 Boston Scientific Scimed, Inc. Gastrointestinal implants
US9180036B2 (en) 2001-08-27 2015-11-10 Boston Scientific Scimed, Inc. Methods for implanting medical devices
US8337566B2 (en) 2002-04-08 2012-12-25 Barosense, Inc. Method and apparatus for modifying the exit orifice of a satiation pouch
US8029455B2 (en) 2003-01-16 2011-10-04 Barosense, Inc. Satiation pouches and methods of use
US9180035B2 (en) 2003-10-10 2015-11-10 Boston Scientific Scimed, Inc. Devices and methods for retaining a gastro-esophageal implant
US9445791B2 (en) 2003-10-10 2016-09-20 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US10285836B2 (en) 2003-10-10 2019-05-14 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US20100241146A1 (en) * 2003-10-10 2010-09-23 Stack Richard S Devices and methods for retaining a gastro-esophageal implant
US9248038B2 (en) 2003-10-10 2016-02-02 Boston Scientific Scimed, Inc. Methods for retaining a gastro-esophageal implant
US10098773B2 (en) 2004-04-26 2018-10-16 Boston Scientific Scimed, Inc. Restrictive and/or obstructive implant for inducing weight loss
US8241202B2 (en) 2004-04-26 2012-08-14 Barosense, Inc. Restrictive and/or obstructive implant for inducing weight loss
US20080190989A1 (en) * 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US8469977B2 (en) 2005-10-03 2013-06-25 Barosense, Inc. Endoscopic plication device and method
US8109895B2 (en) 2006-09-02 2012-02-07 Barosense, Inc. Intestinal sleeves and associated deployment systems and methods
US20080195226A1 (en) * 2006-09-02 2008-08-14 Williams Michael S Intestinal sleeves and associated deployment systems and methods
US9687334B2 (en) 2006-09-02 2017-06-27 Boston Scientific Scimed, Inc. Intestinal sleeves and associated deployment systems and methods
US20090125040A1 (en) * 2006-09-13 2009-05-14 Hambly Pablo R Tissue acquisition devices and methods
US9314361B2 (en) 2006-09-15 2016-04-19 Boston Scientific Scimed, Inc. System and method for anchoring stomach implant
US20080294179A1 (en) * 2007-05-12 2008-11-27 Balbierz Daniel J Devices and methods for stomach partitioning
US9545249B2 (en) 2007-07-18 2017-01-17 Boston Scientific Scimed, Inc. Overtube introducer for use in endoscopic bariatric surgery
US9456825B2 (en) 2007-07-18 2016-10-04 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US10537456B2 (en) 2007-07-18 2020-01-21 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US20090024143A1 (en) * 2007-07-18 2009-01-22 Crews Samuel T Endoscopic implant system and method
US20090236394A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US7909223B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US9636114B2 (en) 2008-03-18 2017-05-02 Boston Scientific Scimed, Inc. Endoscopic stapling devices
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
US7922062B2 (en) 2008-03-18 2011-04-12 Barosense, Inc. Endoscopic stapling devices and methods
US7913892B2 (en) 2008-03-18 2011-03-29 Barosense, Inc. Endoscopic stapling devices and methods
US7909222B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US20090236390A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US20090236397A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US7909219B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US20090236392A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US20090236396A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US20090236389A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US20090236400A1 (en) * 2008-03-18 2009-09-24 David Cole Endoscopic stapling devices and methods
US7721932B2 (en) 2008-03-18 2010-05-25 Barosense, Inc. Endoscopic stapling devices and methods
US7708181B2 (en) 2008-03-18 2010-05-04 Barosense, Inc. Endoscopic stapling devices and methods
US8864008B2 (en) 2008-03-18 2014-10-21 Boston Scientific Scimed, Inc. Endoscopic stapling devices and methods
US11202627B2 (en) 2008-11-10 2021-12-21 Boston Scientific Scimed, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US10368862B2 (en) 2008-11-10 2019-08-06 Boston Scientific Scimed, Inc. Multi-fire stapling methods
US9451956B2 (en) 2008-11-10 2016-09-27 Boston Scientific Scimed, Inc. Multi-fire stapling systems
US8747421B2 (en) 2008-11-10 2014-06-10 Boston Scientific Scimed, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US8894567B2 (en) * 2009-02-09 2014-11-25 Olympus Medical Systems Corp. Medical tube
US20110004060A1 (en) * 2009-02-09 2011-01-06 Olympus Medical Systems Corp. Medical tube
US20100276469A1 (en) * 2009-05-01 2010-11-04 Barosense, Inc. Plication tagging device and method
US20100280529A1 (en) * 2009-05-04 2010-11-04 Barosense, Inc. Endoscopic implant system and method
US8961539B2 (en) 2009-05-04 2015-02-24 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US20130237768A1 (en) * 2010-07-05 2013-09-12 Virtual Ports Ltd. Internal retractor
US10143459B2 (en) * 2010-07-05 2018-12-04 Virtual Ports Ltd. Internal retractor
US20150265141A1 (en) * 2012-10-25 2015-09-24 Era Endoscopy S.R.L. Flexible and extensible tubular guide and manufacture process thereof
US9770159B2 (en) * 2012-10-25 2017-09-26 Era Endoscopy S.R.L. Flexible and extensible tubular guide and manufacture process thereof
US10238508B2 (en) * 2013-12-23 2019-03-26 Jmea Corporation Devices and methods for preparation of vertebral members
US20170156889A1 (en) * 2013-12-23 2017-06-08 Jmea Corporation Devices And Methods For Preparation Of Vertebral Members
US11013618B2 (en) 2013-12-23 2021-05-25 Jmea Corporation Devices and methods for preparation of vertebral members
US9345435B1 (en) 2014-01-26 2016-05-24 Cesar Del Aguila Esophageal introducer
CN107635455A (en) * 2015-04-03 2018-01-26 格勒诺布尔-阿尔卑斯大学 Implantable intestines reactor
CN109602386A (en) * 2019-02-15 2019-04-12 沈阳智能机器人国家研究院有限公司 A kind of illumination laparoscope and its control method
US11950778B2 (en) 2020-08-11 2024-04-09 Boston Scientific Scimed, Inc. Tissue-acquisition and fastening devices and methods

Also Published As

Publication number Publication date
US20140046139A1 (en) 2014-02-13
WO2009011881A1 (en) 2009-01-22
US9545249B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
US9545249B2 (en) Overtube introducer for use in endoscopic bariatric surgery
US8684912B2 (en) Deployable endoscopic support device
JP5091229B2 (en) Transluminal surgical system
US11324528B2 (en) Steerable medical device
US8348834B2 (en) Steerable surgical access devices and methods
US7853331B2 (en) Medical device with procedure improvement features
EP2459049B1 (en) Deflectable instrument ports
JP5555311B2 (en) Device for advancing a device from one body lumen to another
US20110060183A1 (en) Multi-instrument access devices and systems
WO2007136820A2 (en) Multifunctional instrument introducer
EP2848187A1 (en) Flexible tube for endoscope, and endoscope
US20130110089A1 (en) Apparatus for guiding medical devices and related methods of use
US20220133136A1 (en) Access device
US20100125168A1 (en) Methods and devices for endoscope control in a body cavity

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAROSENSE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLE, DAVID;HARRIS, MELANIE;CASTRO, CARLOS;AND OTHERS;REEL/FRAME:021449/0066;SIGNING DATES FROM 20080717 TO 20080723

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAROSENSE, INC.;REEL/FRAME:030887/0951

Effective date: 20130703

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION