US3562820A - Tubular sheet and strip form prostheses on a basis of biological tissue - Google Patents

Tubular sheet and strip form prostheses on a basis of biological tissue Download PDF

Info

Publication number
US3562820A
US3562820A US661900A US3562820DA US3562820A US 3562820 A US3562820 A US 3562820A US 661900 A US661900 A US 661900A US 3562820D A US3562820D A US 3562820DA US 3562820 A US3562820 A US 3562820A
Authority
US
United States
Prior art keywords
tissue
prostheses
prosthesis
layers
biological tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US661900A
Inventor
Bernhard Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3562820A publication Critical patent/US3562820A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3629Intestinal tissue, e.g. small intestinal submucosa
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1348Cellular material derived from plant or animal source [e.g., wood, cotton, wool, leather, etc.]

Definitions

  • the prosthesis itself comprises a unitary structure of alternating layers of natural tissue and collagen fibres.
  • the same is manufactured by applying a strip, sheet or tube of biological material onto a substantially rigid support, coating the exposed surface with a binder paste, as for example, a collagen fibre paste, or bringing about the swelling of the exposed surface, thereafter applying a second layer of natural material and repeating the procedure until the desired Wall thickness is obtained.
  • the multi-layer prosthesis is then dried and removed from the underlying support.
  • the invention described herein relates to tubular, strip and sheet form prostheses on a basis of biological tissue and to methods for manufacturing and using the same. More particularly this invention relates to a multi-layer prosthesis on a basis of biological tissue.
  • the prostheses of the invention are suitable for use as vascular, esophagus, bronchus, intestinal, ureter and cardiac valve prostheses and as other corrective parts of various organs such as liver.
  • the present invention overcomes the difficulties above mentioned and provides a prosthetic device for use in the replacement, repair and strengthening of living organs superior in effectiveness to anything previously known.
  • One of the objects of the invention is the provision of a prosthesis that is created from biological tissue which does not undergo deterioration after installation even after prolonged periods.
  • Another object is the provision of a prosthesis that is created from biological tissue that will allow for and facilitate tissue growth and organ regeneration at the site of installation.
  • a further object is the provision of a prosthesis that is created from biological tissue which can be simply and effectively installed using the conventional techniques.
  • Still a further object of the invention is the provision of a method by which such a prosthesis on a basis of biological tissue can be formed.
  • FIG. 1 is a longitudinal central section through an embodiment of a prosthesis in accordance with the invention
  • FIG. 2 is a diagrammatic view illustrating the method of forming the prosthesis of FIG. 1;
  • FIGS. 3 and 4 are diagrammatic perspective views illustrating two somewhat different forms of the prostheses embodying the invention.
  • a prosthesis in tubular, sheet or strip form which comprises at least two layers of biological tissue intimately joined and dried. More specific-ally the prosthesis comprises alternating layers of biological tissue and collagen fibers intimately joined and dried.
  • the biological prostheses are manufactured by placing over, i.e., applying onto the surface of a firm support a piece of tubular, sheet or strip form biological tissue, causing the exposed surface thereof to swell so as to produce thereon an adhesive or glue like effect and/ or the exposed surface is coated with a binder or bonding agent as for example a collagen fiber paste, a second piece of biological tissue is then applied to the first and the procedure repeated until a multi-layered structure of the desired wall thickness is obtained. The prosthesis is then dried and removed from the support.
  • a binder or bonding agent as for example a collagen fiber paste
  • the submucosa As natural tissue for use in the manufacture of the prostheses of the invention there are suitable in particular the submucosa, which can be obtained in pure form from the small intestine of sheep, goats and other animals, and the so-called goldbeaters skin, which is made up of the serosa taken from the intestines of cattle.
  • the submucosa which is obtained in the form of a fine, but high strength tube, is composed of diagonally disposed collagen fibres.
  • the mucosa and muscular tissue still adhering to the submucosa can easily be removed by the process as conventionally used in the manufacture of catgut.
  • the collagen fibre paste may be prepared, for example, by the process described in German patent specification No. 659,490. Furthermore, this layer of collagen fibres ensures that any holes, tears, and the like made in the tissue during the manufacture thereof, during the operation for installing the same, or a later time, will close easily. This can prevent hemorrhage, which hitherto has been highly dangerous.
  • the collagen fibre paste has a further advantage in that therapeutic substances may be incorporated therein. Thus, for example, heparin may be added to inhibit the clotting of blood, cartilage powder or chondroitin sulfate included to stimulate the formation of new collagen fibres for the vascular intima, as Well as other therapeutic substances.
  • a tubular core or a plate made of glass or a synthetic material as the firm, more or less rigid support.
  • synthetic materials include polyolefins as for example polyethylene or polypropylene etc.
  • any inert fairly firm material may be employed.
  • a lubricant as for example, glycerol or a silicone oil.
  • the tissue is then coated with a binder paste, preferably a collagen fibre paste, and, if necessary, the paste is allowed to dry slightly. Another piece of tissue is then applied, and the process is repeated until the desired thickness is obtained.
  • the finished prosthesis may contain, for example, about eight layers of tissue. The number of layers is generally determined by the thickness of the composite layers and by the ultimate use.
  • the prosthesis made by the process of the invention may be subjected to a hardening process to prevent premature absorption by the body tissues.
  • hardening agents there may be used physiologically acceptable vegetable or synthetic substances or, as for example, aldehydes. Instances of aldehydes that are suitable for this purpose are formaldehyde, glutardialdehyde and aldehydes of higher polyhydroxy compounds. The concentration of the hardening agent may be varied to produce the rate of absorption required.
  • fascia prostheses are obtained which are generally known as patches and which may be used to close defects in the tympanic membrane and the heart wall, for hollow-walled organs or as heart valves.
  • collagen patches in sheet form are also used to repair damage to parenchymatous soft tissue, for example, in the liver, kidney, spleen and pancreas. This can be effected in the following manner:
  • a so-called mattress suture is made, i.e., a large atrau matic needle threaded with a soft suture is passed through the parenchymatous tissue on one side of the wound and out of the other side.
  • the needle is then passed through a stiffened and perforated collagen patch from underneath.
  • the needle is then passed back through an adjacent perforation in the collagen patch at an appropriate distance from the point at which it emerged, through the organ and out the other side.
  • the length of the suture should be such that a second perforated collagen patch may be threaded onto the two ends. When the needle has been removed, the two ends of the suture are knotted together over the collagen patch.
  • Strips for surgical purposes may also be cut from sheets, i.e., membranes of the same material.
  • Tubular, flat or fluted prostheses may also be made by the process of the invention in addition to membranes and strips.
  • the tubular prostheses may be of uniform diameter throughout their length or their diameter may be widened or narrowed conically.
  • a tube made of synthetic material as, for example, a tube made of polyethylene or polypropylene and which has been provided with a plurality of threads 2 is thoroughly cleaned and, if necessary, treated with a silicone oil.
  • the submucosa 3 is thus provided with a thread 2' and is of a standardized size.
  • tissue is then coated with a binder paste, preferably a collagen fibre paste, the paste is allowed to dry slightly, and then another tube of tissue is drawn over the first one.
  • a synthetic filament is wound round it as before and the tissue is dried. This procedure may be repeated until the desired thickness of wall is obtained.
  • the multiple layers of tissue are firmly cemented together by the binder.
  • the threaded tube of tissue so obtained has the necessary strength, density and elasticity required of vascular prostheses, and it can be sutured and is puncture-proof.
  • the thread with which it is provided prevents it from kinking when it is moved after implantation in the host, thereby permitting an unhindered flow of blood. It is also extensible.
  • a smooth tubular prosthesis that is to say, without any thread or fluting, for example, as used for prosthetic repair of the cystic duct, the ureter, the esophagus or, in special cases, blood vessels
  • the same procedure as with the screw-threaded plastic tube may be followed, but without winding a filament round the tissue or allowing it to conform to the shape of the thread.
  • the elastic tube of tissue is drawn over the plastic tube and held taut over it by tying the tissue tube at both ends and allowing it to conform to the outer circumference of the plastic tube without complementing the shape of the thread.
  • a smooth plastic tube may be used as a support, for the layers of tissue.
  • Prostheses for example, for the esophagus, trachea and intestine, can be made by the process described above, with due regard to anatomical requirements, diameter and thickness of wall.
  • the strength of such prostheses can be considerably increased by placing layers of synthetic or natural tissue or even metallic clasps or spirals between the layers making up the actual prosthesis.
  • the synthetic tissue used may be made, for example, from polyamide or polyester fibres.
  • the natural tissue may be, for example, biological tissue, for exam ple, serosa tissue, or material made from natural fibres.
  • the serosa tissue may be wound round the prosthesis diagonally, first from left to right and then from right to left. If necessary, these layers of tissue may be pretreated, as for example, by stretching.
  • the process has a negative effect on the physical properties of the collagen fibre and neutralization is generally necessary afterwards, followed by washing out of the salts formed during neutralization.
  • Sterilization of the prostheses so obtained may be elfected by gamma-radiation, which process also reduces the antigenic properties of the collagen.
  • FIGS. 3 and 4 there are shown two somewhat ditferent forms of the prostheses in accordance with the invention.
  • FIG. 3 the embodiment comprising alternating layers of biological tissue 7 bonded together with a bond ing agent 8 is shown and in FIG. 4 the embodiment wherein the bonding is effected by swelling the layers 7 is set out.
  • the prostheses in accordance with the invention has been subjected to trial and has been observed and evaluated as a suitability, production of toxic symptoms, decomposition, detachment, secondary reactions such as abnormal tissue growth, etc.
  • the trials consisted in surgical implantation of the prostheses in otherwise normal animals, i.e., the requirement for the prostheses was surgically induced, observation of the thusly treated animals during the recovery period and for varying periods thereafter. During this time, numerous test procedures were carried out, the same including chemical, X-ray, electrocardiographic, etc., procedures. At the end of various predetermined time intervals certain of the animals were sacrificed and any of the animals possibly involved organs examined both microscopically and macroscopically. In every instance, the results of procedures and tests in both the living and sacrificed animals established the safety and suitability of the prosthetic devices for replacement and repair of damaged organs. It is to be noted that as experimental animals, there were employed cats, dogs and monkeys.
  • the device has been surgically implanted in human subjects, in each case where the subjects condition was indicative of such treatment. Almost all of the subjects are still under observation and to date there have not been observed any untoward results or happenings directly associated with the use of the herein disclosed prosthetic devices.
  • a tubular prosthetic device on a basis of biological tissue comprising at least two superimposed layers consisting of tubes of natural tissue applied in their natural tubular form prepared from the submucous layers of intestines of mammals, and said layers being bonded together by means of collagen fibers.
  • a prosthetic device according to claim 1 wherein said collagen fibres consist of a collagen fiber paste.
  • a prosthetic device according to claim 1 wherein at least one of said layers is a prehardened layer which has been prehardened by contacting the same with a hardening agent.
  • a prosthetic device according to claim 3 wherein said hardening agent is an aldehyde.

Abstract

There are disclosed tubular, sheet and strip form prostheses on a basis of biological tissue for use in the replacement, repair and strengthening of various living organs such as the vasculature, esophagus, bronchus, intesting, ureter, liver, kidney, etc. and a process for making and using the same. The prosthesis itself comprises a unitary structure of alternating layers of natural tissue and collagen fibers. The same is manufactured by applying a strip, sheet or tube of biological material onto a substantially rigid support, coatings the exposed surface with a binder paste, as for example, a collagen fibre paste, or bringing about the swelling of the exposed surface, thereafter applying a second layer of natural material and repeating the procedure until the desired wall thickness is obtained. The multi-layer prosthesis is then dried and removed from underlying support.

Description

Feb. 16, 1971 BRUN TUBULAR SHEET AND STRIP FORM PROSTHESES ON A BASIS OF BIOLOGICAL TISSUE Filed Aug. 21, 1967 WIIIIIIIIIIIIIIII FIG. 2
INVENTOR BERNHARD BRAUN Maf pl? ATTORNEYS.
United States Patent 3,562,820 TUBULAR SHEET AND STRIP FORM PROSTHESES ON A BASIS OF BIOLOGICAL TISSUE Bernhard Braun, Trankeiucke 1, Melsungen, Germany Filed Aug. 21, 1967, Ser. No. 661,900 Claims priority, application Austria, Aug. 22, 1966, A 7,958/66 Int. Cl. A61f 1/24 US. Cl. 3-1 5 Claims ABSTRACT OF THE DISCLOSURE There are disclosed tubular, sheet and strip form prostheses on a basis of biological tissue for use in the replacement, repair and strengthening of various living organs such as the vasculature, esophagus, bronchus, intestine, ureter, liver, kidney, etc. and a process for making and using the same. The prosthesis itself comprises a unitary structure of alternating layers of natural tissue and collagen fibres. The same is manufactured by applying a strip, sheet or tube of biological material onto a substantially rigid support, coating the exposed surface with a binder paste, as for example, a collagen fibre paste, or bringing about the swelling of the exposed surface, thereafter applying a second layer of natural material and repeating the procedure until the desired Wall thickness is obtained. The multi-layer prosthesis is then dried and removed from the underlying support.
The invention described herein relates to tubular, strip and sheet form prostheses on a basis of biological tissue and to methods for manufacturing and using the same. More particularly this invention relates to a multi-layer prosthesis on a basis of biological tissue.
The prostheses of the invention are suitable for use as vascular, esophagus, bronchus, intestinal, ureter and cardiac valve prostheses and as other corrective parts of various organs such as liver.
It is already known to prepare tubes and fabrics from polytetrafluoroethylene or polyester fibers, either by weaving or knitting or by a combined weaving and knitting process and to use the same to replace diseased blood vessels or parts of the heart. At first, clinical results with these prostheses were satisfactory and highly promising, but deterioration set in after some considerable time (Materia Medica Nordmark 16, [1964], page 245 and Der Internist 6 [1965] H. 5, page 216). Among the other disadvantages which were observed, for example, was that natural tissue did not grow into the synthetic fibre fabric. To overcome this disadvantage it has been proposed to make the synthetic fibre fabrics in a more open mesh, but this impaired other properties of the prostheses, for example, the strength thereof. A further disadvantage associated with the known synthetic fibre prostheses is the difliculty encountered in suturing the same into position because the synthetic fiber prostheses tear easily and the holes thus formed do not close.
The present invention overcomes the difficulties above mentioned and provides a prosthetic device for use in the replacement, repair and strengthening of living organs superior in effectiveness to anything previously known.
One of the objects of the invention is the provision of a prosthesis that is created from biological tissue which does not undergo deterioration after installation even after prolonged periods.
Another object is the provision of a prosthesis that is created from biological tissue that will allow for and facilitate tissue growth and organ regeneration at the site of installation.
Patented Feb. 16, 1971 A further object is the provision of a prosthesis that is created from biological tissue which can be simply and effectively installed using the conventional techniques.
Still a further object of the invention is the provision of a method by which such a prosthesis on a basis of biological tissue can be formed.
The manner in which these and other objects of this invention are obtained will become apparent from the detailed description and the following drawings in which:
FIG. 1 is a longitudinal central section through an embodiment of a prosthesis in accordance with the invention;
FIG. 2 is a diagrammatic view illustrating the method of forming the prosthesis of FIG. 1; and
FIGS. 3 and 4 are diagrammatic perspective views illustrating two somewhat different forms of the prostheses embodying the invention.
According to the invention there is provided a prosthesis in tubular, sheet or strip form which comprises at least two layers of biological tissue intimately joined and dried. More specific-ally the prosthesis comprises alternating layers of biological tissue and collagen fibers intimately joined and dried.
According to the present invention, the biological prostheses are manufactured by placing over, i.e., applying onto the surface of a firm support a piece of tubular, sheet or strip form biological tissue, causing the exposed surface thereof to swell so as to produce thereon an adhesive or glue like effect and/ or the exposed surface is coated with a binder or bonding agent as for example a collagen fiber paste, a second piece of biological tissue is then applied to the first and the procedure repeated until a multi-layered structure of the desired wall thickness is obtained. The prosthesis is then dried and removed from the support.
As natural tissue for use in the manufacture of the prostheses of the invention there are suitable in particular the submucosa, which can be obtained in pure form from the small intestine of sheep, goats and other animals, and the so-called goldbeaters skin, which is made up of the serosa taken from the intestines of cattle. The submucosa, which is obtained in the form of a fine, but high strength tube, is composed of diagonally disposed collagen fibres. The mucosa and muscular tissue still adhering to the submucosa can easily be removed by the process as conventionally used in the manufacture of catgut.
As the strength of a single layer of submucoca is far too inadequate, the same having a thickness of only about 15 1,, it is advantageous to use a number of layers cemented together with a binder, as for example, a collagen fibre paste. The collagen fibre paste may be prepared, for example, by the process described in German patent specification No. 659,490. Furthermore, this layer of collagen fibres ensures that any holes, tears, and the like made in the tissue during the manufacture thereof, during the operation for installing the same, or a later time, will close easily. This can prevent hemorrhage, which hitherto has been highly dangerous. The collagen fibre paste has a further advantage in that therapeutic substances may be incorporated therein. Thus, for example, heparin may be added to inhibit the clotting of blood, cartilage powder or chondroitin sulfate included to stimulate the formation of new collagen fibres for the vascular intima, as Well as other therapeutic substances.
It is also possible to cause the individual layers of tissue to swell and to bond them together in the swollen state. Organic acids, especially dilute lactic acid, have been found to be particularly suitable for swelling the single layers. The use of highly dilute solutions of lactic acid is preferred in this connection as the same has the advantage that no acidic end products are formed.
In carrying out the process of the invention it is possible to use, for example, a tubular core or a plate made of glass or a synthetic material as the firm, more or less rigid support. Instances of synthetic materials include polyolefins as for example polyethylene or polypropylene etc. However, any inert fairly firm material may be employed. Prior to use, it is advantageous to treat the surface or surfaces of the support with a lubricant, as for example, glycerol or a silicone oil. A thoroughly cleansed tubular or flat piece of biological tissue, for example, submucosa or serosa tissue, which may have been subjected to bleaching with hydrogen peroxide, is then placed onto the support. The tissue is then coated with a binder paste, preferably a collagen fibre paste, and, if necessary, the paste is allowed to dry slightly. Another piece of tissue is then applied, and the process is repeated until the desired thickness is obtained. The finished prosthesis may contain, for example, about eight layers of tissue. The number of layers is generally determined by the thickness of the composite layers and by the ultimate use.
The prosthesis made by the process of the invention may be subjected to a hardening process to prevent premature absorption by the body tissues. As hardening agents there may be used physiologically acceptable vegetable or synthetic substances or, as for example, aldehydes. Instances of aldehydes that are suitable for this purpose are formaldehyde, glutardialdehyde and aldehydes of higher polyhydroxy compounds. The concentration of the hardening agent may be varied to produce the rate of absorption required.
The hardening process is preferably carried out after the final layer of tissue has been applied. However, it is possible to harden the single layers of tissue before they are applied. By adopting this latter procedure, the single layers of tissue may be hardened to varying degrees, thereby producing a prosthesis in which the single layers have different rates of absorption. For example, when using a tubular core as a support, the innermost layers may be hardened to a considerable degree to produce a tough, resistant core, and the outside layers may be only slightly hardened to ensure a specific rate of absorption.
After removal of the support and, if necessary, after the tube has been cut open, fascia prostheses are obtained which are generally known as patches and which may be used to close defects in the tympanic membrane and the heart wall, for hollow-walled organs or as heart valves.
Furthermore, collagen patches in sheet form are also used to repair damage to parenchymatous soft tissue, for example, in the liver, kidney, spleen and pancreas. This can be effected in the following manner:
A so-called mattress suture is made, i.e., a large atrau matic needle threaded with a soft suture is passed through the parenchymatous tissue on one side of the wound and out of the other side. The needle is then passed through a stiffened and perforated collagen patch from underneath. The needle is then passed back through an adjacent perforation in the collagen patch at an appropriate distance from the point at which it emerged, through the organ and out the other side. The length of the suture should be such that a second perforated collagen patch may be threaded onto the two ends. When the needle has been removed, the two ends of the suture are knotted together over the collagen patch.
Strips for surgical purposes, as for example, for securing a movable kidney or for use in surgery of the incontinentia vesicae, may also be cut from sheets, i.e., membranes of the same material.
Tubular, flat or fluted prostheses may also be made by the process of the invention in addition to membranes and strips. The tubular prostheses may be of uniform diameter throughout their length or their diameter may be widened or narrowed conically.
Referring to the drawing a tube made of synthetic material as, for example, a tube made of polyethylene or polypropylene and which has been provided with a plurality of threads 2 is thoroughly cleaned and, if necessary, treated with a silicone oil. A tube of tissue 3, preferably submucosa, which has been thoroughly cleansed and, if necessary, bleached With hydrogen peroxide, is drawn over the polyethylene tube 1, allowed to dry slightly, if necessary, and then a synthetic filament 4 is wound round the tubular tissue corresponding to the depressions of the thread and the tissue is dried. The filament may then be removed. The submucosa 3 is thus provided with a thread 2' and is of a standardized size. The tissue is then coated with a binder paste, preferably a collagen fibre paste, the paste is allowed to dry slightly, and then another tube of tissue is drawn over the first one. A synthetic filament is wound round it as before and the tissue is dried. This procedure may be repeated until the desired thickness of wall is obtained. The multiple layers of tissue are firmly cemented together by the binder. When the single layers of tissue are to be united by swelling it is possible either first to swell the single layers of tissue and to draw them onto the tube or core in the swollen state or to swell them on the core. To free the tube formed by these layers of tissue from the supporting tube or core, warm air is passed through the tube or core in this case a plastic tube, to soften it slightly, whereupon both ends of the tube are pulled until it stretches and detaches from the tissue at the beginning of the thread section. It can then be pulled out of the submucosa tube in the form of a plastic filament without the submucosa tube adhering to it or being damaged. Prostheses suitable for various purposes may be produced by varying the pitch of the thread, the depth of the thread and the number of turns.
The threaded tube of tissue so obtained has the necessary strength, density and elasticity required of vascular prostheses, and it can be sutured and is puncture-proof. The thread with which it is provided prevents it from kinking when it is moved after implantation in the host, thereby permitting an unhindered flow of blood. It is also extensible.
On the other hand, if a smooth tubular prosthesis is required, that is to say, without any thread or fluting, for example, as used for prosthetic repair of the cystic duct, the ureter, the esophagus or, in special cases, blood vessels, the same procedure as with the screw-threaded plastic tube may be followed, but without winding a filament round the tissue or allowing it to conform to the shape of the thread. The elastic tube of tissue is drawn over the plastic tube and held taut over it by tying the tissue tube at both ends and allowing it to conform to the outer circumference of the plastic tube without complementing the shape of the thread. Alternatively, a smooth plastic tube may be used as a support, for the layers of tissue.
Prostheses, for example, for the esophagus, trachea and intestine, can be made by the process described above, with due regard to anatomical requirements, diameter and thickness of wall. The strength of such prostheses can be considerably increased by placing layers of synthetic or natural tissue or even metallic clasps or spirals between the layers making up the actual prosthesis. The synthetic tissue used may be made, for example, from polyamide or polyester fibres. The natural tissue may be, for example, biological tissue, for exam ple, serosa tissue, or material made from natural fibres. The serosa tissue may be wound round the prosthesis diagonally, first from left to right and then from right to left. If necessary, these layers of tissue may be pretreated, as for example, by stretching.
It is also possible to bond the layers of tissue by swelling the tubular or flat pieces in an acidic or alkaline medium. In this process the upper layers of collagen fibers are slightly hydrolyzed and converted into tropocollagen which, on drying, has a glue-like adhesive effect.
The process has a negative effect on the physical properties of the collagen fibre and neutralization is generally necessary afterwards, followed by washing out of the salts formed during neutralization.
Sterilization of the prostheses so obtained may be elfected by gamma-radiation, which process also reduces the antigenic properties of the collagen.
In FIGS. 3 and 4 there are shown two somewhat ditferent forms of the prostheses in accordance with the invention. In FIG. 3 the embodiment comprising alternating layers of biological tissue 7 bonded together with a bond ing agent 8 is shown and in FIG. 4 the embodiment wherein the bonding is effected by swelling the layers 7 is set out.
The prostheses in accordance with the invention has been subjected to trial and has been observed and evaluated as a suitability, production of toxic symptoms, decomposition, detachment, secondary reactions such as abnormal tissue growth, etc. The trials consisted in surgical implantation of the prostheses in otherwise normal animals, i.e., the requirement for the prostheses was surgically induced, observation of the thusly treated animals during the recovery period and for varying periods thereafter. During this time, numerous test procedures were carried out, the same including chemical, X-ray, electrocardiographic, etc., procedures. At the end of various predetermined time intervals certain of the animals were sacrificed and any of the animals possibly involved organs examined both microscopically and macroscopically. In every instance, the results of procedures and tests in both the living and sacrificed animals established the safety and suitability of the prosthetic devices for replacement and repair of damaged organs. It is to be noted that as experimental animals, there were employed cats, dogs and monkeys.
The device has been surgically implanted in human subjects, in each case where the subjects condition was indicative of such treatment. Almost all of the subjects are still under observation and to date there have not been observed any untoward results or happenings directly associated with the use of the herein disclosed prosthetic devices.
What is claimed is:
1. A tubular prosthetic device on a basis of biological tissue comprising at least two superimposed layers consisting of tubes of natural tissue applied in their natural tubular form prepared from the submucous layers of intestines of mammals, and said layers being bonded together by means of collagen fibers.
2. A prosthetic device according to claim 1 wherein said collagen fibres consist of a collagen fiber paste.
3. A prosthetic device according to claim 1 wherein at least one of said layers is a prehardened layer which has been prehardened by contacting the same with a hardening agent.
4. A prosthetic device according to claim 3 wherein said hardening agent is an aldehyde.
5. A hardened prosthetic device according to claim 1 wherein said prosthetic device has been hardened by treatment thereof with a hardening agent.
References Cited UNITED STATES PATENTS 1,254,031 l/1918 Davis 128-3355 2,127,903 8/1938 Bowen 128334 3,272,204 9/1966 Artandi et a1. 128-334 3,366,440 1/1968 Nuwayser 128-334X 3,425,418 2/ 1969 Chvapil et al 128334 OTHER REFERENCES Experimental and Clinical Utilization of a Prosthesis for Replacement of the Trachea, by R. E. Taber et al., A.M.A. Archives of Surgery, vol. 77, October 1958, pp. 576-583. I
DALTON L. TRULUCK, Primary Examiner R. L. FRINKS, Assistant Examiner US. Cl. X.R.
US661900A 1966-08-22 1967-08-21 Tubular sheet and strip form prostheses on a basis of biological tissue Expired - Lifetime US3562820A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT795866A AT261800B (en) 1966-08-22 1966-08-22 Process for the manufacture of tubular, smooth or threaded tissue-blood vessel prostheses

Publications (1)

Publication Number Publication Date
US3562820A true US3562820A (en) 1971-02-16

Family

ID=3601064

Family Applications (1)

Application Number Title Priority Date Filing Date
US661900A Expired - Lifetime US3562820A (en) 1966-08-22 1967-08-21 Tubular sheet and strip form prostheses on a basis of biological tissue

Country Status (4)

Country Link
US (1) US3562820A (en)
AT (1) AT261800B (en)
DE (1) DE1617330B1 (en)
GB (1) GB1195992A (en)

Cited By (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422383A1 (en) * 1973-05-11 1974-11-21 Rodney C Perkins SYNTHETIC ANATOMICAL LINKS AND METHOD OF MANUFACTURING THEM
US3866609A (en) * 1972-04-05 1975-02-18 Charles Howard Sparks Apparatus for growing graft tubes in place
US3894530A (en) * 1973-07-06 1975-07-15 Irving I Dardik Method for repairing, augmenting, or replacing a body conduit or organ
US3974526A (en) * 1973-07-06 1976-08-17 Dardik Irving I Vascular prostheses and process for producing the same
US3988782A (en) * 1973-07-06 1976-11-02 Dardik Irving I Non-antigenic, non-thrombogenic infection-resistant grafts from umbilical cord vessels and process for preparing and using same
US3993078A (en) * 1974-11-04 1976-11-23 Gambro Ag Insert for use preferably in vascular surgery
US4061134A (en) * 1975-10-28 1977-12-06 Samuels Peter B Arterial graft device
US4130904A (en) * 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
WO1984003036A1 (en) * 1983-02-03 1984-08-16 Wallsten Hans Ivar Blood vessel prosthesis
US4483339A (en) * 1982-01-29 1984-11-20 Rolando Gillis Vascular surgery roll
JPS60106460A (en) * 1983-08-03 1985-06-11 シレイ・インコ−ポレ−テツド Artificial blood vessel
US4553974A (en) * 1984-08-14 1985-11-19 Mayo Foundation Treatment of collagenous tissue with glutaraldehyde and aminodiphosphonate calcification inhibitor
US4629458A (en) * 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
WO1987001930A1 (en) * 1985-09-25 1987-04-09 Kern Seymour P Method of manufacture and implantation of corneal inlays
US4759758A (en) * 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4772283A (en) * 1986-05-16 1988-09-20 White Thomas C Corneal implant
US4787899A (en) * 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4798606A (en) * 1985-02-26 1989-01-17 Corvita Corporation Reinforcing structure for cardiovascular graft
US4842599A (en) * 1986-10-28 1989-06-27 Ann M. Bronstein Prosthetic cornea and method of implantation therefor
US4850999A (en) * 1980-05-24 1989-07-25 Institute Fur Textil-Und Faserforschung Of Stuttgart Flexible hollow organ
WO1990000395A1 (en) * 1988-07-11 1990-01-25 Purdue Research Foundation Tissue graft composition and method
US4956178A (en) * 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
WO1996031226A1 (en) * 1995-04-07 1996-10-10 Purdue Research Foundation Large area submucosal graft constructs and method for making the same
US5573784A (en) * 1991-09-24 1996-11-12 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5628788A (en) * 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5645860A (en) * 1995-04-07 1997-07-08 Purdue Research Foundation Tissue graft and method for urinary urothelium reconstruction replacement
US5662700A (en) * 1983-12-09 1997-09-02 Endovascular Technologies, Inc. Artificial graft and implantation method
WO1997037613A1 (en) * 1996-04-05 1997-10-16 Depuy Orthopaedics, Inc. Tissue graft construct for replacement of cartilaginous structures
US5700269A (en) * 1995-06-06 1997-12-23 Corvita Corporation Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability
US5714582A (en) * 1995-03-17 1998-02-03 Bioscience Consultants Invertebrate type V telopeptide collagen, methods of making, and use thereof
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5755791A (en) * 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
US5785679A (en) * 1995-07-19 1998-07-28 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5849037A (en) * 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5865723A (en) * 1995-12-29 1999-02-02 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US5873906A (en) * 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5876432A (en) * 1994-04-01 1999-03-02 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5879383A (en) * 1994-04-29 1999-03-09 W. L. Gore & Associates, Inc. Blood contact surfaces using endothelium on a subendothelial matrix
US5911757A (en) * 1991-05-16 1999-06-15 Seare, Jr.; William J. Methods and apparatus for transcutaneous access
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5968091A (en) * 1996-03-26 1999-10-19 Corvita Corp. Stents and stent grafts having enhanced hoop strength and methods of making the same
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
EP0965310A1 (en) * 1996-12-06 1999-12-22 Tapic International Co., Ltd. Artificial blood vessel
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6077217A (en) * 1997-06-25 2000-06-20 Ramus Medical Technologies, Inc. System and method for assembling graft structures
US6126686A (en) * 1996-12-10 2000-10-03 Purdue Research Foundation Artificial vascular valves
US6187039B1 (en) 1996-12-10 2001-02-13 Purdue Research Foundation Tubular submucosal graft constructs
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6334872B1 (en) 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US6337389B1 (en) 1995-03-17 2002-01-08 Bioscience Consultants, L.L.C. Method and process for the production of collagen preparations from invertebrate marine animals and compositions thereof
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
EP1177800A1 (en) * 2000-08-04 2002-02-06 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa
US6348065B1 (en) 1995-03-01 2002-02-19 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6352553B1 (en) 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US20020099436A1 (en) * 1996-12-23 2002-07-25 Troy Thornton Kink-resistant bifurcated prosthesis
US20020103542A1 (en) * 2000-09-18 2002-08-01 Bilbo Patrick R. Methods for treating a patient using a bioengineered flat sheet graft prostheses
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US20020161429A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020169500A1 (en) * 1996-04-26 2002-11-14 Jang G. David Intravascular stent
US6494904B1 (en) 1996-12-27 2002-12-17 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US20020193886A1 (en) * 1998-03-23 2002-12-19 Anne Claeson Implants and method of making
US20020193870A1 (en) * 1996-04-26 2002-12-19 Jang G. David Intravascular stent
US20030021827A1 (en) * 2001-07-16 2003-01-30 Prasanna Malaviya Hybrid biologic/synthetic porous extracellular matrix scaffolds
US20030023316A1 (en) * 2000-08-04 2003-01-30 Brown Laura Jean Hybrid biologic-synthetic bioabsorable scaffolds
US20030026787A1 (en) * 1999-08-06 2003-02-06 Fearnot Neal E. Tubular graft construct
US20030032961A1 (en) * 2001-07-16 2003-02-13 Pelo Mark Joseph Devices from naturally occurring biologically derived materials
US20030033022A1 (en) * 2001-07-16 2003-02-13 Plouhar Pamela Lynn Cartilage repair and regeneration device and method
US20030036797A1 (en) * 2001-07-16 2003-02-20 Prasanna Malaviya Meniscus regeneration device and method
US20030044444A1 (en) * 2001-07-16 2003-03-06 Prasanna Malaviya Porous extracellular matrix scaffold and method
US20030049299A1 (en) * 2001-07-16 2003-03-13 Prasanna Malaviya Porous delivery scaffold and method
US20030054022A1 (en) * 1999-12-22 2003-03-20 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030065379A1 (en) * 1994-04-29 2003-04-03 Babbs Charles F. Reduction of stent thrombogenicity
US20030078617A1 (en) * 2001-07-16 2003-04-24 Schwartz Herbert E. Unitary surgical device and method
US20030083736A1 (en) * 1995-03-01 2003-05-01 Brian J. Brown Longitudinally flexible expandable stent
US20030088309A1 (en) * 2001-10-09 2003-05-08 Olympus Optical Co., Ltd. Stent
US20030093144A1 (en) * 1998-02-02 2003-05-15 Scimed Life Systems, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US6572650B1 (en) 1998-06-05 2003-06-03 Organogenesis Inc. Bioengineered vascular graft support prostheses
US6579538B1 (en) 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
US20030130747A1 (en) * 1998-06-05 2003-07-10 Organogenesis, Inc. Bioengineered flat sheet graft prostheses
US20030149472A1 (en) * 1995-11-07 2003-08-07 Leonard Pinchuk Modular endluminal stent-grafts and methods for their use
US20030158607A1 (en) * 1995-04-07 2003-08-21 Carr Robert M. Tissue repair fabric
US20030167088A1 (en) * 1998-06-05 2003-09-04 Organogenesis, Inc. Bioengineered vascular graft prostheses
US20030171824A1 (en) * 1998-06-05 2003-09-11 Organogenesis, Inc. Bioengineered tubular graft prostheses
US20030187498A1 (en) * 2002-03-28 2003-10-02 Medtronic Ave, Inc. Chamfered stent strut and method of making same
US20030206860A1 (en) * 1998-12-01 2003-11-06 Bleyer Mark W. Radiopaque implantable collagenous biomaterial device
US6645342B2 (en) 2002-03-08 2003-11-11 William M. Scott Pull strip for forming holes
US6656219B1 (en) 1987-10-19 2003-12-02 Dominik M. Wiktor Intravascular stent
US20040002723A1 (en) * 2002-06-27 2004-01-01 Robert Ball Method and apparatus for implantation of soft tissue implant
US20040039246A1 (en) * 2001-07-27 2004-02-26 Barry Gellman Medical slings
US20040043006A1 (en) * 2002-08-27 2004-03-04 Badylak Stephen F. Tissue regenerative composition
US20040078076A1 (en) * 1996-08-23 2004-04-22 Badylak Stephen F. Purified submucosa graft material
US20040079043A1 (en) * 2002-03-08 2004-04-29 Scott William M. Pull strip for forming holes
US20040098042A1 (en) * 2002-06-03 2004-05-20 Devellian Carol A. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US20040127969A1 (en) * 1987-04-06 2004-07-01 Lazarus Harrison M. Artificial graft and implantation method
US20040133271A1 (en) * 2000-09-22 2004-07-08 Jang G. David Intravascular stent and assembly
US20040137042A1 (en) * 1996-08-23 2004-07-15 Hiles Michael C Multi-formed collagenous biomaterial medical device
US20040143344A1 (en) * 2001-07-16 2004-07-22 Prasanna Malaviya Implantable tissue repair device and method
US20040158185A1 (en) * 1998-12-01 2004-08-12 Moran Christopher J. Embolization device
US20040166169A1 (en) * 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US20040176855A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Decellularized liver for repair of tissue and treatment of organ deficiency
US20040175366A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Scaffold for cell growth and differentiation
US20040176834A1 (en) * 1995-03-01 2004-09-09 Brown Brian J. Longitudinally flexible expandable stent
US6790220B2 (en) * 2001-06-08 2004-09-14 Morris Innovative Research, Inc. Method and apparatus for sealing access
US6814748B1 (en) 1995-06-07 2004-11-09 Endovascular Technologies, Inc. Intraluminal grafting system
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20050025838A1 (en) * 2003-06-25 2005-02-03 Badylak Stephen F. Conditioned compositions for tissue restoration
US20050038520A1 (en) * 2003-08-11 2005-02-17 Francois Binette Method and apparatus for resurfacing an articular surface
US6860901B1 (en) 1988-03-09 2005-03-01 Endovascular Technologies, Inc. Intraluminal grafting system
US20050071012A1 (en) * 2003-09-30 2005-03-31 Hassan Serhan Methods and devices to replace spinal disc nucleus pulposus
US20050113910A1 (en) * 2002-01-04 2005-05-26 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US20050136764A1 (en) * 2003-12-18 2005-06-23 Sherman Michael C. Designed composite degradation for spinal implants
US6939377B2 (en) 2000-08-23 2005-09-06 Thoratec Corporation Coated vascular grafts and methods of use
US20050249771A1 (en) * 2004-05-04 2005-11-10 Prasanna Malaviya Hybrid biologic-synthetic bioabsorbable scaffolds
US20050249772A1 (en) * 2004-05-04 2005-11-10 Prasanna Malaviya Hybrid biologic-synthetic bioabsorbable scaffolds
US20050273155A1 (en) * 2002-08-20 2005-12-08 Bahler Clinton D Endoluminal device with extracellular matrix material and methods
US6981986B1 (en) 1995-03-01 2006-01-03 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20060058835A1 (en) * 1999-09-27 2006-03-16 Yuichi Murayama Bioabsorbable polymeric implants and a method of using the same to create occlusions
US20060128296A1 (en) * 2004-10-29 2006-06-15 Schwan Wade E Intestine processing device and associated method
US20060136047A1 (en) * 2002-09-06 2006-06-22 Obermiller F J Tissue graft prosthesis devices containing juvenile or small diameter submucosa
US20060135638A1 (en) * 2004-12-22 2006-06-22 Pedrozo Hugo A Method for organizing the assembly of collagen fibers and compositions formed therefrom
WO2006135297A1 (en) * 2005-06-16 2006-12-21 Sinova Safetech Innovation Ab Bowel implant
US20070038244A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Method and apparatus for sealing access
US20070038245A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Dilator
US20070073384A1 (en) * 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070112411A1 (en) * 2004-02-09 2007-05-17 Obermiller F J Stent graft devices having collagen coating
US20070112360A1 (en) * 2005-11-15 2007-05-17 Patrick De Deyne Bioprosthetic device
US20070150064A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation
US20070150063A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Devices for intervertebral augmentation and methods of controlling their delivery
US20070150059A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation using injectable formulations and enclosures
US20070219618A1 (en) * 2006-03-17 2007-09-20 Cully Edward H Endoprosthesis having multiple helically wound flexible framework elements
US20070224237A1 (en) * 2006-03-24 2007-09-27 Julia Hwang Barbed sutures having a therapeutic agent thereon
US20070239195A1 (en) * 2004-05-18 2007-10-11 Nocca David J Adjustable Prosthetic Band
WO2007147739A2 (en) * 2006-06-22 2007-12-27 Orthomed Collagen tubes
US7361195B2 (en) 2001-07-16 2008-04-22 Depuy Products, Inc. Cartilage repair apparatus and method
US20080107665A1 (en) * 2005-10-27 2008-05-08 University Of Notre Dame Du Lac Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
US20080140094A1 (en) * 2006-12-11 2008-06-12 Schwartz Herbert E Unitary surgical device and method
US20080145397A1 (en) * 1998-12-01 2008-06-19 Hiles Michael C Multi-formed collagenous biomaterial medical device
US20080167724A1 (en) * 2006-12-18 2008-07-10 Med Institute, Inc. Stent graft with releasable therapeutic agent and soluable coating
US20080213335A1 (en) * 1996-08-23 2008-09-04 Cook William A Graft prosthesis, materials and methods
US20080260800A1 (en) * 2005-10-27 2008-10-23 Suckow Mark A Extracellular matrix cancer vaccine adjuvant
WO2008134541A2 (en) * 2007-04-25 2008-11-06 Musculoskeletal Transplant Foundation Reinforced biological mesh for surgical reinforcement
US20080319460A1 (en) * 2005-10-03 2008-12-25 Pietro Cortellini Patch For Replacement of a Portion of Bladder Wall Following Partial Cystectomy
US20080319531A1 (en) * 1995-03-01 2008-12-25 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20090024106A1 (en) * 2007-07-17 2009-01-22 Morris Edward J Method and apparatus for maintaining access
US20090048669A1 (en) * 2004-10-28 2009-02-19 Flagle Jacob A Methods and systems for modifying vascular valves
WO2009040768A2 (en) * 2007-09-27 2009-04-02 Carlos Alvarado Tissue grafting method
US20090220461A1 (en) * 2008-02-28 2009-09-03 University Of Notre Dame Metastasis inhibition preparations and methods
US7595062B2 (en) 2005-07-28 2009-09-29 Depuy Products, Inc. Joint resurfacing orthopaedic implant and associated method
US20090306688A1 (en) * 2008-06-10 2009-12-10 Patel Umesh H Quilted implantable graft
US20100076555A1 (en) * 2008-09-19 2010-03-25 Marten Lewis H Coated devices comprising a fiber mesh imbedded in the device walls
US20100228337A1 (en) * 2009-03-04 2010-09-09 Abbott Laboratories Vascular Enterprises Limited Mirror image stent and method of use
US20100233214A1 (en) * 2005-10-27 2010-09-16 University Of Notre Dame Du Lac Extracellular matrix cancer vaccine adjuvant
US20100303886A1 (en) * 2008-03-14 2010-12-02 Janis Abram D Graft materials and methods for staged delivery of bioactive components
US20110020418A1 (en) * 2009-07-22 2011-01-27 Bosley Jr Rodney W Particulate Tissue Graft with Components of Differing Density and Methods of Making and Using the Same
US20110020420A1 (en) * 2009-07-22 2011-01-27 Bosley Jr Rodney W Variable Density Tissue Graft Composition and Methods of Making and Using the Same
US20110150934A1 (en) * 2009-12-18 2011-06-23 University Of Notre Dame Ovarian Tumor Tissue Cell Preparations/Vaccines for the Treatment/Inhibition of Ovarian Tumors and Ovarian Cancer
US20110166673A1 (en) * 2008-06-10 2011-07-07 Patel Umesh H Quilted implantable graft
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7993365B2 (en) 2001-06-08 2011-08-09 Morris Innovative, Inc. Method and apparatus for sealing access
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US8118832B1 (en) 2008-06-16 2012-02-21 Morris Innovative, Inc. Method and apparatus for sealing access
US8257715B1 (en) 2004-08-26 2012-09-04 University Of Notre Dame Tissue vaccines and uses thereof
US8361144B2 (en) 2010-03-01 2013-01-29 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
US8449607B2 (en) 2007-12-18 2013-05-28 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US8663313B2 (en) 2011-03-03 2014-03-04 Boston Scientific Scimed, Inc. Low strain high strength stent
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8691259B2 (en) 2000-12-21 2014-04-08 Depuy Mitek, Llc Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US8696744B2 (en) 2011-05-27 2014-04-15 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
US8778362B2 (en) 2005-10-27 2014-07-15 University Of Notre Dame Anti-tumor/cancer heterologous acellular collagenous preparations and uses thereof
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US8846059B2 (en) 2009-12-08 2014-09-30 University Of Notre Dame Extracellular matrix adjuvant and methods for prevention and/or inhibition of ovarian tumors and ovarian cancer
US8895045B2 (en) 2003-03-07 2014-11-25 Depuy Mitek, Llc Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US9023342B2 (en) 2007-09-27 2015-05-05 Carlos A. Alvarado Tissue grafting method
US9119738B2 (en) 2010-06-28 2015-09-01 Colibri Heart Valve Llc Method and apparatus for the endoluminal delivery of intravascular devices
US9211362B2 (en) 2003-06-30 2015-12-15 Depuy Mitek, Llc Scaffold for connective tissue repair
US9511171B2 (en) 2002-10-18 2016-12-06 Depuy Mitek, Llc Biocompatible scaffolds with tissue fragments
WO2017034600A1 (en) 2015-08-21 2017-03-02 Cormatrix Cardiovascular, Inc. Extracellular matrix prostheses for treating damaged biological tissue
US20170233945A1 (en) * 2016-02-15 2017-08-17 Modern Meadow, Inc. Method for biofabricating composite material
US9737400B2 (en) 2010-12-14 2017-08-22 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US20180308394A1 (en) * 2010-06-30 2018-10-25 Stuart Charles Segall Wearable Partial Task Surgical Simulator
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
US10687934B2 (en) 2016-07-05 2020-06-23 Carlos A. Alvarado Serous membrane for ocular surface disorders
CN111467574A (en) * 2020-04-21 2020-07-31 四川大学 Biological valve material based on EDC/NHS activation and recombinant human collagen modification and preparation method thereof
US11214844B2 (en) 2017-11-13 2022-01-04 Modern Meadow, Inc. Biofabricated leather articles having zonal properties
US11352497B2 (en) 2019-01-17 2022-06-07 Modern Meadow, Inc. Layered collagen materials and methods of making the same
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
US11395726B2 (en) 2017-09-11 2022-07-26 Incubar Llc Conduit vascular implant sealing device for reducing endoleaks
US11495143B2 (en) 2010-06-30 2022-11-08 Strategic Operations, Inc. Emergency casualty care trainer
US11688303B2 (en) 2010-06-30 2023-06-27 Strategic Operations, Inc. Simulated torso for an open surgery simulator
US11854427B2 (en) 2010-06-30 2023-12-26 Strategic Operations, Inc. Wearable medical trainer
US11913166B2 (en) 2015-09-21 2024-02-27 Modern Meadow, Inc. Fiber reinforced tissue composites

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH632921A5 (en) * 1978-04-06 1982-11-15 Intermedicat Gmbh Method of producing bend-free, elastic, puncture-tight vascular protheses
CA2045222A1 (en) * 1990-07-12 1992-01-13 Norman R. Weldon Composite biosynthetic graft
GB2298577B (en) * 1995-03-09 1999-02-17 Univ Bristol Arteriovenous bypass grafting

Cited By (427)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866609A (en) * 1972-04-05 1975-02-18 Charles Howard Sparks Apparatus for growing graft tubes in place
US4014971A (en) * 1973-05-11 1977-03-29 Perkins Rodney C Method for making a tympanic membrane prosthesis
US4077069A (en) * 1973-05-11 1978-03-07 Perkins Rodney C Synthetic tympanic membrane
DE2422383A1 (en) * 1973-05-11 1974-11-21 Rodney C Perkins SYNTHETIC ANATOMICAL LINKS AND METHOD OF MANUFACTURING THEM
US3974526A (en) * 1973-07-06 1976-08-17 Dardik Irving I Vascular prostheses and process for producing the same
US3988782A (en) * 1973-07-06 1976-11-02 Dardik Irving I Non-antigenic, non-thrombogenic infection-resistant grafts from umbilical cord vessels and process for preparing and using same
US3894530A (en) * 1973-07-06 1975-07-15 Irving I Dardik Method for repairing, augmenting, or replacing a body conduit or organ
US3993078A (en) * 1974-11-04 1976-11-23 Gambro Ag Insert for use preferably in vascular surgery
US4061134A (en) * 1975-10-28 1977-12-06 Samuels Peter B Arterial graft device
US4130904A (en) * 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
US4850999A (en) * 1980-05-24 1989-07-25 Institute Fur Textil-Und Faserforschung Of Stuttgart Flexible hollow organ
US4483339A (en) * 1982-01-29 1984-11-20 Rolando Gillis Vascular surgery roll
WO1984003036A1 (en) * 1983-02-03 1984-08-16 Wallsten Hans Ivar Blood vessel prosthesis
JPS60106460A (en) * 1983-08-03 1985-06-11 シレイ・インコ−ポレ−テツド Artificial blood vessel
JPS6344382B2 (en) * 1983-08-03 1988-09-05 Shiley Inc
US5662700A (en) * 1983-12-09 1997-09-02 Endovascular Technologies, Inc. Artificial graft and implantation method
US6610085B1 (en) 1983-12-09 2003-08-26 Endovascular Technologies, Inc. Intraluminal repair device and method
US4787899A (en) * 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US6017364A (en) * 1983-12-09 2000-01-25 Endovascular Technologies, Inc. Intraluminal repair device and catheter
US4553974A (en) * 1984-08-14 1985-11-19 Mayo Foundation Treatment of collagenous tissue with glutaraldehyde and aminodiphosphonate calcification inhibitor
US4759758A (en) * 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4629458A (en) * 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
US4798606A (en) * 1985-02-26 1989-01-17 Corvita Corporation Reinforcing structure for cardiovascular graft
US4676790A (en) * 1985-09-25 1987-06-30 Kern Seymour P Method of manufacture and implantation of corneal inlays
WO1987001930A1 (en) * 1985-09-25 1987-04-09 Kern Seymour P Method of manufacture and implantation of corneal inlays
US4772283A (en) * 1986-05-16 1988-09-20 White Thomas C Corneal implant
US4842599A (en) * 1986-10-28 1989-06-27 Ann M. Bronstein Prosthetic cornea and method of implantation therefor
US20040127969A1 (en) * 1987-04-06 2004-07-01 Lazarus Harrison M. Artificial graft and implantation method
US6416535B1 (en) 1987-04-06 2002-07-09 Endovascular Technologies, Inc. Artificial graft and implantation method
US6923828B1 (en) 1987-10-19 2005-08-02 Medtronic, Inc. Intravascular stent
US6656219B1 (en) 1987-10-19 2003-12-02 Dominik M. Wiktor Intravascular stent
US6702844B1 (en) 1988-03-09 2004-03-09 Endovascular Technologies, Inc. Artificial graft and implantation method
US7166125B1 (en) 1988-03-09 2007-01-23 Endovascular Technologies, Inc. Intraluminal grafting system
US6860901B1 (en) 1988-03-09 2005-03-01 Endovascular Technologies, Inc. Intraluminal grafting system
WO1990000395A1 (en) * 1988-07-11 1990-01-25 Purdue Research Foundation Tissue graft composition and method
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4956178A (en) * 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
AU613499B2 (en) * 1988-07-11 1991-08-01 Purdue Research Foundation Tissue graft composition and method
US20040064180A1 (en) * 1989-08-24 2004-04-01 Boneau Michael D. Endovascular support device and method
US6827733B2 (en) 1989-08-24 2004-12-07 Medtronic Ave, Inc. Endovascular support device and method
US20050119726A1 (en) * 1989-08-24 2005-06-02 Medtronic Vascular, Inc. Endovascular support device and method
US6663661B2 (en) 1989-08-24 2003-12-16 Medtronic Ave, Inc. Endovascular support device and method
US5911757A (en) * 1991-05-16 1999-06-15 Seare, Jr.; William J. Methods and apparatus for transcutaneous access
US5573784A (en) * 1991-09-24 1996-11-12 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5651174A (en) * 1992-03-19 1997-07-29 Medtronic, Inc. Intravascular radially expandable stent
US5443496A (en) * 1992-03-19 1995-08-22 Medtronic, Inc. Intravascular radially expandable stent
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US6890351B2 (en) * 1994-02-18 2005-05-10 Organogenesis Inc. Method for treating diseased or damaged organs
US6334872B1 (en) 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6017362A (en) * 1994-04-01 2000-01-25 Gore Enterprise Holdings, Inc. Folding self-expandable intravascular stent
US5876432A (en) * 1994-04-01 1999-03-02 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US20030065379A1 (en) * 1994-04-29 2003-04-03 Babbs Charles F. Reduction of stent thrombogenicity
US5879383A (en) * 1994-04-29 1999-03-09 W. L. Gore & Associates, Inc. Blood contact surfaces using endothelium on a subendothelial matrix
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US8623065B2 (en) 1994-08-31 2014-01-07 W. L. Gore & Associates, Inc. Exterior supported self-expanding stent-graft
US6517570B1 (en) 1994-08-31 2003-02-11 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6613072B2 (en) 1994-09-08 2003-09-02 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US20030208260A1 (en) * 1994-09-08 2003-11-06 Lilip Lau Procedures for introducing stents and stent-grafts
US5873906A (en) * 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5919225A (en) * 1994-09-08 1999-07-06 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US8348992B2 (en) 1995-03-01 2013-01-08 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7988717B2 (en) 1995-03-01 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6962603B1 (en) 1995-03-01 2005-11-08 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8728147B2 (en) 1995-03-01 2014-05-20 Boston Scientific Limited Longitudinally flexible expandable stent
US20040176834A1 (en) * 1995-03-01 2004-09-09 Brown Brian J. Longitudinally flexible expandable stent
US8801773B2 (en) 1995-03-01 2014-08-12 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20080319531A1 (en) * 1995-03-01 2008-12-25 Boston Scientific Scimed, Inc. Flexible and expandable stent
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070073384A1 (en) * 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8142489B2 (en) 1995-03-01 2012-03-27 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20030083736A1 (en) * 1995-03-01 2003-05-01 Brian J. Brown Longitudinally flexible expandable stent
US20040181276A1 (en) * 1995-03-01 2004-09-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6913619B2 (en) 1995-03-01 2005-07-05 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8114146B2 (en) 1995-03-01 2012-02-14 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6348065B1 (en) 1995-03-01 2002-02-19 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6981986B1 (en) 1995-03-01 2006-01-03 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6818014B2 (en) 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US5714582A (en) * 1995-03-17 1998-02-03 Bioscience Consultants Invertebrate type V telopeptide collagen, methods of making, and use thereof
US6337389B1 (en) 1995-03-17 2002-01-08 Bioscience Consultants, L.L.C. Method and process for the production of collagen preparations from invertebrate marine animals and compositions thereof
US6916910B2 (en) 1995-03-17 2005-07-12 Bioscience Consultants Method and process for the production of collagen preparations from invertebrate marine animals and compositions thereof
US20020147154A1 (en) * 1995-03-17 2002-10-10 Lloyd Wolfinbarger Method and process for the production of collagen preparations from invertebrate marine animals and compositions thereof
US7909886B2 (en) 1995-04-07 2011-03-22 Organogenesis, Inc. Tissue repair fabric
US20030158607A1 (en) * 1995-04-07 2003-08-21 Carr Robert M. Tissue repair fabric
US7060103B2 (en) 1995-04-07 2006-06-13 Organogenesis Inc. Tissue repair fabric
WO1996031226A1 (en) * 1995-04-07 1996-10-10 Purdue Research Foundation Large area submucosal graft constructs and method for making the same
US5711969A (en) * 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US5645860A (en) * 1995-04-07 1997-07-08 Purdue Research Foundation Tissue graft and method for urinary urothelium reconstruction replacement
US5955110A (en) * 1995-04-07 1999-09-21 Purdue Research Foundation, Inc. Multilayered submucosal graft constructs and method for making the same
US5885619A (en) * 1995-04-07 1999-03-23 Purdue Research Foundation Large area submucosal tissue graft constructs and method for making the same
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
JP2012101100A (en) * 1995-04-07 2012-05-31 Organogenesis Inc Peracetic acid crosslinked non-antigenic icl grafts
US5762966A (en) * 1995-04-07 1998-06-09 Purdue Research Foundation Tissue graft and method for urinary tract urothelium reconstruction and replacement
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5849037A (en) * 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
US6237460B1 (en) 1995-04-12 2001-05-29 Corvita Corporation Method for preparation of a self-expanding stent for a medical device to be introduced into a cavity of a body
US5700269A (en) * 1995-06-06 1997-12-23 Corvita Corporation Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability
US6814748B1 (en) 1995-06-07 2004-11-09 Endovascular Technologies, Inc. Intraluminal grafting system
US5785679A (en) * 1995-07-19 1998-07-28 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5628788A (en) * 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US20030149472A1 (en) * 1995-11-07 2003-08-07 Leonard Pinchuk Modular endluminal stent-grafts and methods for their use
US8323328B2 (en) 1995-12-14 2012-12-04 W. L. Gore & Associates, Inc. Kink resistant stent-graft
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6520986B2 (en) 1995-12-14 2003-02-18 Gore Enterprise Holdings, Inc. Kink resistant stent-graft
US6352553B1 (en) 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US6361637B2 (en) 1995-12-14 2002-03-26 Gore Enterprise Holdings, Inc. Method of making a kink resistant stent-graft
US20030130721A1 (en) * 1995-12-14 2003-07-10 Martin Gerald Ray Kink resistant stent-graft
US5865723A (en) * 1995-12-29 1999-02-02 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
AU720362B2 (en) * 1995-12-29 2000-06-01 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US5968091A (en) * 1996-03-26 1999-10-19 Corvita Corp. Stents and stent grafts having enhanced hoop strength and methods of making the same
US5968096A (en) * 1996-04-05 1999-10-19 Purdue Research Foundation Method of repairing perforated submucosal tissue graft constructs
US5755791A (en) * 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
US5997575A (en) * 1996-04-05 1999-12-07 Purdue Research Foundation Perforated submucosal tissue graft constructs
US5922028A (en) * 1996-04-05 1999-07-13 Depuy Orthopaedics, Inc. Multi-layered SIS tissue graft construct for replacement of cartilaginous elements in situ
US5788625A (en) * 1996-04-05 1998-08-04 Depuy Orthopaedics, Inc. Method of making reconstructive SIS structure for cartilaginous elements in situ
US6176880B1 (en) 1996-04-05 2001-01-23 Depuy Orthopaedics, Inc. Tissue graft construct for replacement of cartilaginous structures
WO1997037613A1 (en) * 1996-04-05 1997-10-16 Depuy Orthopaedics, Inc. Tissue graft construct for replacement of cartilaginous structures
US6793676B2 (en) 1996-04-05 2004-09-21 Depuy Orthopaedics, Inc. Method of reconstructing a joint
US7326241B2 (en) 1996-04-26 2008-02-05 Boston Scientific Scimed, Inc. Intravascular stent
US7081130B2 (en) 1996-04-26 2006-07-25 Boston Scientific Scimed, Inc. Intravascular Stent
US20020161430A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020161429A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020193870A1 (en) * 1996-04-26 2002-12-19 Jang G. David Intravascular stent
US20020169500A1 (en) * 1996-04-26 2002-11-14 Jang G. David Intravascular stent
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
US6770088B1 (en) 1996-04-26 2004-08-03 Scimed Life Systems, Inc. Intravascular stent
US9445926B2 (en) 1996-04-26 2016-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US8021414B2 (en) 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US7699895B2 (en) 1996-08-23 2010-04-20 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US20080171092A1 (en) * 1996-08-23 2008-07-17 Cook William A Graft prosthesis, materials and methods
US8920515B2 (en) 1996-08-23 2014-12-30 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20080167727A1 (en) * 1996-08-23 2008-07-10 Cook William A Graft prosthesis, materials and methods
US20080167728A1 (en) * 1996-08-23 2008-07-10 Cook William A Graft prosthesis, materials and methods
US20100106256A2 (en) * 1996-08-23 2010-04-29 Cook Biotech Incorporated Graft prosthesis, materials and methods
US7652077B2 (en) * 1996-08-23 2010-01-26 Cook Incorporated Graft prosthesis, materials and methods
US8808392B2 (en) 1996-08-23 2014-08-19 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20080063680A1 (en) * 1996-08-23 2008-03-13 Hiles Michael C Dried collagenous biomaterial medical device prepared from a urinary tissue source
US9138444B2 (en) 1996-08-23 2015-09-22 Cook Biotech Incorporated Dried collagenous biomaterial medical device
US20110076329A1 (en) * 1996-08-23 2011-03-31 Cook William A Graft prosthesis, material and methods
US20100104658A2 (en) * 1996-08-23 2010-04-29 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20100106257A2 (en) * 1996-08-23 2010-04-29 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20040078076A1 (en) * 1996-08-23 2004-04-22 Badylak Stephen F. Purified submucosa graft material
US8716227B2 (en) 1996-08-23 2014-05-06 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20080213335A1 (en) * 1996-08-23 2008-09-04 Cook William A Graft prosthesis, materials and methods
US8920516B2 (en) 1996-08-23 2014-12-30 Cook Biotech Incorporated Graft prosthesis, material and methods
US8007542B2 (en) 1996-08-23 2011-08-30 Cook Biotech Incorporated Freeze-dried collagenous biomaterial medical sponge device
US20040180042A1 (en) * 1996-08-23 2004-09-16 Cook William A. Graft prosthesis, materials and methods
US20040137042A1 (en) * 1996-08-23 2004-07-15 Hiles Michael C Multi-formed collagenous biomaterial medical device
US20100104617A2 (en) * 1996-08-23 2010-04-29 Cook Biotech Incorporated Graft prosthesis, materials and methods
US20080145395A1 (en) * 1996-08-23 2008-06-19 Hiles Michael C Multi-formed collagenous biomaterial medical device
US8128708B2 (en) 1996-08-23 2012-03-06 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device for use in wound care
EP0965310A1 (en) * 1996-12-06 1999-12-22 Tapic International Co., Ltd. Artificial blood vessel
EP0965310A4 (en) * 1996-12-06 2003-03-19 Tapic Int Co Ltd Artificial blood vessel
US6358284B1 (en) * 1996-12-10 2002-03-19 Med Institute, Inc. Tubular grafts from purified submucosa
US6187039B1 (en) 1996-12-10 2001-02-13 Purdue Research Foundation Tubular submucosal graft constructs
US6126686A (en) * 1996-12-10 2000-10-03 Purdue Research Foundation Artificial vascular valves
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US7682380B2 (en) 1996-12-23 2010-03-23 Gore Enterprise Holdings, Inc. Kink-resistant bifurcated prosthesis
US20090138066A1 (en) * 1996-12-23 2009-05-28 Leopold Eric W Implant Deployment Apparatus
US20100145434A1 (en) * 1996-12-23 2010-06-10 Troy Thornton Kink resistant bifurcated prosthesis
US20020099436A1 (en) * 1996-12-23 2002-07-25 Troy Thornton Kink-resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6494904B1 (en) 1996-12-27 2002-12-17 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US6077217A (en) * 1997-06-25 2000-06-20 Ramus Medical Technologies, Inc. System and method for assembling graft structures
US20030093144A1 (en) * 1998-02-02 2003-05-15 Scimed Life Systems, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US8562665B2 (en) 1998-02-02 2013-10-22 Boston Scientific Scimed, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US20020193886A1 (en) * 1998-03-23 2002-12-19 Anne Claeson Implants and method of making
US7041131B2 (en) 1998-06-05 2006-05-09 Organogenesis, Inc. Bioengineered vascular graft support prostheses
US6986735B2 (en) 1998-06-05 2006-01-17 Organogenesis Inc. Method of making a bioremodelable vascular graft prosthesis
US20030195618A1 (en) * 1998-06-05 2003-10-16 Organogenesis, Inc. Bioengineered vascular graft support prostheses
US20030171824A1 (en) * 1998-06-05 2003-09-11 Organogenesis, Inc. Bioengineered tubular graft prostheses
US20060100717A1 (en) * 1998-06-05 2006-05-11 Organogenesis, Inc. Bioengineered vascular graft prostheses
US20030167088A1 (en) * 1998-06-05 2003-09-04 Organogenesis, Inc. Bioengineered vascular graft prostheses
US20030130747A1 (en) * 1998-06-05 2003-07-10 Organogenesis, Inc. Bioengineered flat sheet graft prostheses
US7121999B2 (en) 1998-06-05 2006-10-17 Organogenesis Inc. Method of preparing layered graft prostheses
US6572650B1 (en) 1998-06-05 2003-06-03 Organogenesis Inc. Bioengineered vascular graft support prostheses
US7214242B2 (en) 1998-06-05 2007-05-08 Organogenesis, Inc. Bioengineered tubular graft prostheses
US8882850B2 (en) 1998-12-01 2014-11-11 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US20030206860A1 (en) * 1998-12-01 2003-11-06 Bleyer Mark W. Radiopaque implantable collagenous biomaterial device
US7857825B2 (en) 1998-12-01 2010-12-28 Cook Biotech Incorporated Embolization device
US20040158185A1 (en) * 1998-12-01 2004-08-12 Moran Christopher J. Embolization device
US20100204782A1 (en) * 1998-12-01 2010-08-12 Bleyer Mark W Radiopaque implantable collagenous biomaterial device
US7713552B2 (en) 1998-12-01 2010-05-11 Cook Biotech Incorporated Radiopaque implantable collagenous biomaterial device
US9089626B2 (en) 1998-12-01 2015-07-28 Cook Biotech Incorporated Radiopaque implantable collagenous biomaterial device
US20080145397A1 (en) * 1998-12-01 2008-06-19 Hiles Michael C Multi-formed collagenous biomaterial medical device
EP1985320A1 (en) 1998-12-01 2008-10-29 Cook Biotech, Inc. A multi-formed collagenous biomaterial medical device
US8439942B2 (en) 1998-12-01 2013-05-14 Cook Bioteck Incorporated Embolization device
US8652191B2 (en) 1999-08-06 2014-02-18 Cook Biotech Incorporated Tubular graft construct
US7485138B2 (en) 1999-08-06 2009-02-03 Cook Biotech Incorporated Tubular graft construct
US20030026787A1 (en) * 1999-08-06 2003-02-06 Fearnot Neal E. Tubular graft construct
US20090187257A1 (en) * 1999-08-06 2009-07-23 Fearnot Neal E Tubular graft construct
US8388643B2 (en) 1999-09-27 2013-03-05 The Regents Of The University Of California Bioabsorbable polymeric implants and a method of using the same to create occlusions
US20060058835A1 (en) * 1999-09-27 2006-03-16 Yuichi Murayama Bioabsorbable polymeric implants and a method of using the same to create occlusions
US20030059407A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030059405A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6852339B2 (en) 1999-12-22 2005-02-08 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6849273B2 (en) 1999-12-22 2005-02-01 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6861074B2 (en) 1999-12-22 2005-03-01 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US10092678B2 (en) 1999-12-22 2018-10-09 Acell, Inc. Extracellular matrix for the treatment of intestinal disease and methods thereof
US6579538B1 (en) 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
US6869619B2 (en) 1999-12-22 2005-03-22 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6576265B1 (en) 1999-12-22 2003-06-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6887495B2 (en) 1999-12-22 2005-05-03 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US9433701B2 (en) 1999-12-22 2016-09-06 Acell, Inc. Extracellular matrix for the treatment of intestinal disease and methods thereof
US6783776B2 (en) 1999-12-22 2004-08-31 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6890563B2 (en) 1999-12-22 2005-05-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030064112A1 (en) * 1999-12-22 2003-04-03 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US9265860B2 (en) 1999-12-22 2016-02-23 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6890564B2 (en) 1999-12-22 2005-05-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030064111A1 (en) * 1999-12-22 2003-04-03 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6893666B2 (en) 1999-12-22 2005-05-17 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030059410A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6890562B2 (en) 1999-12-22 2005-05-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030054022A1 (en) * 1999-12-22 2003-03-20 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030059411A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030059409A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20030059404A1 (en) * 1999-12-22 2003-03-27 Acell, Inc. Tissue regenerative composition, method of making , and method of use thereof
US7160333B2 (en) 2000-08-04 2007-01-09 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa
EP1177800A1 (en) * 2000-08-04 2002-02-06 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa
US20070129811A1 (en) * 2000-08-04 2007-06-07 Plouhar Pamela L Reinforced small intestinal submucosa
US6638312B2 (en) 2000-08-04 2003-10-28 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa (SIS)
US20040059431A1 (en) * 2000-08-04 2004-03-25 Plouhar Pamela L. Reinforced small intestinal submucosa
US8366787B2 (en) * 2000-08-04 2013-02-05 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
US20030023316A1 (en) * 2000-08-04 2003-01-30 Brown Laura Jean Hybrid biologic-synthetic bioabsorable scaffolds
US7799089B2 (en) 2000-08-04 2010-09-21 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa
US6939377B2 (en) 2000-08-23 2005-09-06 Thoratec Corporation Coated vascular grafts and methods of use
US20020103542A1 (en) * 2000-09-18 2002-08-01 Bilbo Patrick R. Methods for treating a patient using a bioengineered flat sheet graft prostheses
US20040133271A1 (en) * 2000-09-22 2004-07-08 Jang G. David Intravascular stent and assembly
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US8691259B2 (en) 2000-12-21 2014-04-08 Depuy Mitek, Llc Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20070038244A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Method and apparatus for sealing access
US20070038245A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Dilator
US7993365B2 (en) 2001-06-08 2011-08-09 Morris Innovative, Inc. Method and apparatus for sealing access
US6790220B2 (en) * 2001-06-08 2004-09-14 Morris Innovative Research, Inc. Method and apparatus for sealing access
US8092529B2 (en) 2001-07-16 2012-01-10 Depuy Products, Inc. Meniscus regeneration device
US20030032961A1 (en) * 2001-07-16 2003-02-13 Pelo Mark Joseph Devices from naturally occurring biologically derived materials
US20080167716A1 (en) * 2001-07-16 2008-07-10 Schwartz Hebert E Cartilage repair apparatus and method
US8337537B2 (en) * 2001-07-16 2012-12-25 Depuy Products, Inc. Device from naturally occurring biologically derived materials
US8025896B2 (en) 2001-07-16 2011-09-27 Depuy Products, Inc. Porous extracellular matrix scaffold and method
US8012205B2 (en) 2001-07-16 2011-09-06 Depuy Products, Inc. Cartilage repair and regeneration device
US20050027307A1 (en) * 2001-07-16 2005-02-03 Schwartz Herbert Eugene Unitary surgical device and method
US7361195B2 (en) 2001-07-16 2008-04-22 Depuy Products, Inc. Cartilage repair apparatus and method
US20040220574A1 (en) * 2001-07-16 2004-11-04 Pelo Mark Joseph Device from naturally occuring biologically derived materials
US7914808B2 (en) 2001-07-16 2011-03-29 Depuy Products, Inc. Hybrid biologic/synthetic porous extracellular matrix scaffolds
US20040143344A1 (en) * 2001-07-16 2004-07-22 Prasanna Malaviya Implantable tissue repair device and method
US20030021827A1 (en) * 2001-07-16 2003-01-30 Prasanna Malaviya Hybrid biologic/synthetic porous extracellular matrix scaffolds
US7819918B2 (en) 2001-07-16 2010-10-26 Depuy Products, Inc. Implantable tissue repair device
US7163563B2 (en) 2001-07-16 2007-01-16 Depuy Products, Inc. Unitary surgical device and method
US7201917B2 (en) 2001-07-16 2007-04-10 Depuy Products, Inc. Porous delivery scaffold and method
US20030078617A1 (en) * 2001-07-16 2003-04-24 Schwartz Herbert E. Unitary surgical device and method
US20030049299A1 (en) * 2001-07-16 2003-03-13 Prasanna Malaviya Porous delivery scaffold and method
US20030044444A1 (en) * 2001-07-16 2003-03-06 Prasanna Malaviya Porous extracellular matrix scaffold and method
US20030036797A1 (en) * 2001-07-16 2003-02-20 Prasanna Malaviya Meniscus regeneration device and method
US20030033022A1 (en) * 2001-07-16 2003-02-13 Plouhar Pamela Lynn Cartilage repair and regeneration device and method
US7070558B2 (en) * 2001-07-27 2006-07-04 Boston Scientific Scimed, Inc. Medical slings
US20040039246A1 (en) * 2001-07-27 2004-02-26 Barry Gellman Medical slings
US7131992B2 (en) * 2001-10-09 2006-11-07 Olympus Corporation Stent
US20030088309A1 (en) * 2001-10-09 2003-05-08 Olympus Optical Co., Ltd. Stent
US9186248B2 (en) 2002-01-04 2015-11-17 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US8109995B2 (en) 2002-01-04 2012-02-07 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US20090030511A1 (en) * 2002-01-04 2009-01-29 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US8790398B2 (en) 2002-01-04 2014-07-29 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US9554898B2 (en) 2002-01-04 2017-01-31 Colibri Heart Valve Llc Percutaneous prosthetic heart valve
US9125739B2 (en) 2002-01-04 2015-09-08 Colibri Heart Valve Llc Percutaneous replacement heart valve and a delivery and implantation system
US20050113910A1 (en) * 2002-01-04 2005-05-26 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US9610158B2 (en) 2002-01-04 2017-04-04 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US8900294B2 (en) 2002-01-04 2014-12-02 Colibri Heart Valve Llc Method of controlled release of a percutaneous replacement heart valve
US20040079043A1 (en) * 2002-03-08 2004-04-29 Scott William M. Pull strip for forming holes
US6645342B2 (en) 2002-03-08 2003-11-11 William M. Scott Pull strip for forming holes
US20030187498A1 (en) * 2002-03-28 2003-10-02 Medtronic Ave, Inc. Chamfered stent strut and method of making same
US20040098042A1 (en) * 2002-06-03 2004-05-20 Devellian Carol A. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US9216014B2 (en) 2002-06-03 2015-12-22 W.L. Gore & Associates, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20070198060A1 (en) * 2002-06-03 2007-08-23 Nmt Medical, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20040002723A1 (en) * 2002-06-27 2004-01-01 Robert Ball Method and apparatus for implantation of soft tissue implant
US7160326B2 (en) 2002-06-27 2007-01-09 Depuy Products, Inc. Method and apparatus for implantation of soft tissue implant
US20040166169A1 (en) * 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US20050273155A1 (en) * 2002-08-20 2005-12-08 Bahler Clinton D Endoluminal device with extracellular matrix material and methods
US20090248144A1 (en) * 2002-08-20 2009-10-01 Cook Biotech Incorporated Endoluminal device with extracellular matrix material and methods
US7887576B2 (en) 2002-08-20 2011-02-15 Cook Incorporated Endoluminal device with extracellular matrix material and methods
US7550004B2 (en) 2002-08-20 2009-06-23 Cook Biotech Incorporated Endoluminal device with extracellular matrix material and methods
US20040043006A1 (en) * 2002-08-27 2004-03-04 Badylak Stephen F. Tissue regenerative composition
US20060136047A1 (en) * 2002-09-06 2006-06-22 Obermiller F J Tissue graft prosthesis devices containing juvenile or small diameter submucosa
US10603408B2 (en) 2002-10-18 2020-03-31 DePuy Synthes Products, Inc. Biocompatible scaffolds with tissue fragments
US9511171B2 (en) 2002-10-18 2016-12-06 Depuy Mitek, Llc Biocompatible scaffolds with tissue fragments
US20100297212A1 (en) * 2003-03-07 2010-11-25 Badylak Stephen F Scaffold for cell growth and differentiation
US20040176855A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Decellularized liver for repair of tissue and treatment of organ deficiency
US20040175366A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Scaffold for cell growth and differentiation
US20100119579A1 (en) * 2003-03-07 2010-05-13 Badylak Stephen F Decellularized liver for repair of tissue and treatment of organ deficiency
US8895045B2 (en) 2003-03-07 2014-11-25 Depuy Mitek, Llc Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US20110097378A1 (en) * 2003-03-07 2011-04-28 Badylak Stephen F Decellularized liver for repair of tissue and treatment of organ deficiency
US20080058956A1 (en) * 2003-03-07 2008-03-06 Badylak Stephen F Decellularized liver for repair of tissue and treatment of organ deficiency
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20050025838A1 (en) * 2003-06-25 2005-02-03 Badylak Stephen F. Conditioned compositions for tissue restoration
US8409625B2 (en) 2003-06-25 2013-04-02 Acell, Inc. Conditioned decellularized native tissues for tissue restoration
US9211362B2 (en) 2003-06-30 2015-12-15 Depuy Mitek, Llc Scaffold for connective tissue repair
US10583220B2 (en) 2003-08-11 2020-03-10 DePuy Synthes Products, Inc. Method and apparatus for resurfacing an articular surface
US20050038520A1 (en) * 2003-08-11 2005-02-17 Francois Binette Method and apparatus for resurfacing an articular surface
US20050071012A1 (en) * 2003-09-30 2005-03-31 Hassan Serhan Methods and devices to replace spinal disc nucleus pulposus
US20050136764A1 (en) * 2003-12-18 2005-06-23 Sherman Michael C. Designed composite degradation for spinal implants
US20070112411A1 (en) * 2004-02-09 2007-05-17 Obermiller F J Stent graft devices having collagen coating
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
US10420636B2 (en) 2004-02-09 2019-09-24 Cook Medical Technologies Llc Stent graft devices having collagen coating
US20050249772A1 (en) * 2004-05-04 2005-11-10 Prasanna Malaviya Hybrid biologic-synthetic bioabsorbable scaffolds
US20050249771A1 (en) * 2004-05-04 2005-11-10 Prasanna Malaviya Hybrid biologic-synthetic bioabsorbable scaffolds
US7569233B2 (en) 2004-05-04 2009-08-04 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
US20070239195A1 (en) * 2004-05-18 2007-10-11 Nocca David J Adjustable Prosthetic Band
US8257715B1 (en) 2004-08-26 2012-09-04 University Of Notre Dame Tissue vaccines and uses thereof
US7833267B2 (en) * 2004-10-28 2010-11-16 Cook Incorporated Methods and systems for modifying vascular valves
US20090048669A1 (en) * 2004-10-28 2009-02-19 Flagle Jacob A Methods and systems for modifying vascular valves
US20060128296A1 (en) * 2004-10-29 2006-06-15 Schwan Wade E Intestine processing device and associated method
US7513866B2 (en) 2004-10-29 2009-04-07 Depuy Products, Inc. Intestine processing device and associated method
US20060135638A1 (en) * 2004-12-22 2006-06-22 Pedrozo Hugo A Method for organizing the assembly of collagen fibers and compositions formed therefrom
US7354627B2 (en) 2004-12-22 2008-04-08 Depuy Products, Inc. Method for organizing the assembly of collagen fibers and compositions formed therefrom
US20080195228A1 (en) * 2005-06-16 2008-08-14 Sinova Safetech Innovation Ab Bowel Implant
WO2006135297A1 (en) * 2005-06-16 2006-12-21 Sinova Safetech Innovation Ab Bowel implant
US7595062B2 (en) 2005-07-28 2009-09-29 Depuy Products, Inc. Joint resurfacing orthopaedic implant and associated method
US20080319460A1 (en) * 2005-10-03 2008-12-25 Pietro Cortellini Patch For Replacement of a Portion of Bladder Wall Following Partial Cystectomy
US7972385B2 (en) * 2005-10-03 2011-07-05 Antonio Sambusseti Patch for replacement of a portion of bladder wall following partial cystectomy
US9308252B2 (en) 2005-10-27 2016-04-12 Cook Biotech, Inc. Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
US20100136050A1 (en) * 2005-10-27 2010-06-03 University Of Notre Dame Du Lac Extracellular Matrix Materials as Vaccine Adjuvants for Diseases Associated with Infectious Pathogens or Toxins
US20080107665A1 (en) * 2005-10-27 2008-05-08 University Of Notre Dame Du Lac Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
US20080260800A1 (en) * 2005-10-27 2008-10-23 Suckow Mark A Extracellular matrix cancer vaccine adjuvant
US9220770B2 (en) 2005-10-27 2015-12-29 The University Of Notre Dame Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
US8778362B2 (en) 2005-10-27 2014-07-15 University Of Notre Dame Anti-tumor/cancer heterologous acellular collagenous preparations and uses thereof
US20100233214A1 (en) * 2005-10-27 2010-09-16 University Of Notre Dame Du Lac Extracellular matrix cancer vaccine adjuvant
US8778360B2 (en) 2005-10-27 2014-07-15 University Of Notre Dame Extracellular matrix cancer vaccine adjuvant
US8802113B2 (en) 2005-10-27 2014-08-12 University Of Notre Dame Extracellular matrix cancer vaccine adjuvant
US20110076305A1 (en) * 2005-10-27 2011-03-31 University Of Notre Dame Du Lac Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
US20070112360A1 (en) * 2005-11-15 2007-05-17 Patrick De Deyne Bioprosthetic device
US20070150059A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation using injectable formulations and enclosures
US20070150064A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation
US20070150063A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Devices for intervertebral augmentation and methods of controlling their delivery
US20070219618A1 (en) * 2006-03-17 2007-09-20 Cully Edward H Endoprosthesis having multiple helically wound flexible framework elements
US20070224237A1 (en) * 2006-03-24 2007-09-27 Julia Hwang Barbed sutures having a therapeutic agent thereon
US20100221291A1 (en) * 2006-06-22 2010-09-02 Orthomed Collagen tubes
FR2902661A1 (en) * 2006-06-22 2007-12-28 Orthomed Sa Collagen tube for e.g. regeneration of severed nerve, has wall constituted by succession of co-axial, cylindrical, continuous and non-porous collagen films, where each film has specific thickness, and tube has specific length
WO2007147739A2 (en) * 2006-06-22 2007-12-27 Orthomed Collagen tubes
WO2007147739A3 (en) * 2006-06-22 2008-02-21 Orthomed Collagen tubes
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7871440B2 (en) 2006-12-11 2011-01-18 Depuy Products, Inc. Unitary surgical device and method
US20080140094A1 (en) * 2006-12-11 2008-06-12 Schwartz Herbert E Unitary surgical device and method
US20080167724A1 (en) * 2006-12-18 2008-07-10 Med Institute, Inc. Stent graft with releasable therapeutic agent and soluable coating
US9474833B2 (en) 2006-12-18 2016-10-25 Cook Medical Technologies Llc Stent graft with releasable therapeutic agent and soluble coating
US20100185219A1 (en) * 2007-04-25 2010-07-22 Musculosketetal Transplant Foundation Reinforced biological mesh for surgical reinforcement
WO2008134541A3 (en) * 2007-04-25 2010-03-18 Musculoskeletal Transplant Foundation Reinforced biological mesh for surgical reinforcement
WO2008134541A2 (en) * 2007-04-25 2008-11-06 Musculoskeletal Transplant Foundation Reinforced biological mesh for surgical reinforcement
US20090024106A1 (en) * 2007-07-17 2009-01-22 Morris Edward J Method and apparatus for maintaining access
WO2009040768A2 (en) * 2007-09-27 2009-04-02 Carlos Alvarado Tissue grafting method
US20100135964A1 (en) * 2007-09-27 2010-06-03 Alvarado Carlos A Tissue grafting method
WO2009040768A3 (en) * 2007-09-27 2009-05-14 Carlos Alvarado Tissue grafting method
US9023342B2 (en) 2007-09-27 2015-05-05 Carlos A. Alvarado Tissue grafting method
US8449607B2 (en) 2007-12-18 2013-05-28 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US9283266B2 (en) 2008-02-28 2016-03-15 University Of Notre Dame Metastasis inhibition preparations and methods
US20090220461A1 (en) * 2008-02-28 2009-09-03 University Of Notre Dame Metastasis inhibition preparations and methods
US8658196B2 (en) 2008-03-14 2014-02-25 Cook Biotech Incorporated Graft materials and methods for staged delivery of bioactive components
US20100303886A1 (en) * 2008-03-14 2010-12-02 Janis Abram D Graft materials and methods for staged delivery of bioactive components
US9295757B2 (en) 2008-06-10 2016-03-29 Cook Biotech Incorporated Quilted implantable graft
US20110166673A1 (en) * 2008-06-10 2011-07-07 Patel Umesh H Quilted implantable graft
US10688219B2 (en) 2008-06-10 2020-06-23 Cook Biotech Incorporated Quilted implantable graft
US11351021B2 (en) 2008-06-10 2022-06-07 Cook Biotech Incorporated Quilted implantable graft
US20090306688A1 (en) * 2008-06-10 2009-12-10 Patel Umesh H Quilted implantable graft
US8974493B2 (en) 2008-06-16 2015-03-10 Morris Innovative, Inc. Method and apparatus for sealing access
US8118832B1 (en) 2008-06-16 2012-02-21 Morris Innovative, Inc. Method and apparatus for sealing access
US8709080B2 (en) * 2008-09-19 2014-04-29 E. Benson Hood Laboratories Coated devices comprising a fiber mesh imbedded in the device walls
US20100076555A1 (en) * 2008-09-19 2010-03-25 Marten Lewis H Coated devices comprising a fiber mesh imbedded in the device walls
US20100228337A1 (en) * 2009-03-04 2010-09-09 Abbott Laboratories Vascular Enterprises Limited Mirror image stent and method of use
US9561307B2 (en) 2009-07-22 2017-02-07 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US9579183B2 (en) 2009-07-22 2017-02-28 Acell, Inc. Variable density tissue graft composition and methods of making and using the same
US8541032B2 (en) 2009-07-22 2013-09-24 Acell, Inc. Tissue graft composition
US10898610B2 (en) 2009-07-22 2021-01-26 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US9056078B2 (en) 2009-07-22 2015-06-16 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US8968761B2 (en) 2009-07-22 2015-03-03 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US8962035B2 (en) 2009-07-22 2015-02-24 Acell, Inc. Variable density tissue graft composition and methods of making and using the same
US8652500B2 (en) 2009-07-22 2014-02-18 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US20110020420A1 (en) * 2009-07-22 2011-01-27 Bosley Jr Rodney W Variable Density Tissue Graft Composition and Methods of Making and Using the Same
US20110020418A1 (en) * 2009-07-22 2011-01-27 Bosley Jr Rodney W Particulate Tissue Graft with Components of Differing Density and Methods of Making and Using the Same
US11000628B2 (en) 2009-07-22 2021-05-11 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US10517994B2 (en) 2009-07-22 2019-12-31 Acell, Inc. Variable density tissue graft composition and methods of making and using the same
US8298586B2 (en) 2009-07-22 2012-10-30 Acell Inc Variable density tissue graft composition
US11013829B2 (en) 2009-07-22 2021-05-25 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US8846059B2 (en) 2009-12-08 2014-09-30 University Of Notre Dame Extracellular matrix adjuvant and methods for prevention and/or inhibition of ovarian tumors and ovarian cancer
US20110150934A1 (en) * 2009-12-18 2011-06-23 University Of Notre Dame Ovarian Tumor Tissue Cell Preparations/Vaccines for the Treatment/Inhibition of Ovarian Tumors and Ovarian Cancer
US8361144B2 (en) 2010-03-01 2013-01-29 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
US9119738B2 (en) 2010-06-28 2015-09-01 Colibri Heart Valve Llc Method and apparatus for the endoluminal delivery of intravascular devices
US20190371206A1 (en) * 2010-06-30 2019-12-05 Strategic Operations, Inc. Wearable partial task surgical simulator
US10360817B2 (en) * 2010-06-30 2019-07-23 Stuart Charles Segall Wearable partial task surgical simulator
US20180308394A1 (en) * 2010-06-30 2018-10-25 Stuart Charles Segall Wearable Partial Task Surgical Simulator
US11151902B2 (en) * 2010-06-30 2021-10-19 Strategic Operations, Inc. Wearable partial task surgical simulator
US11495143B2 (en) 2010-06-30 2022-11-08 Strategic Operations, Inc. Emergency casualty care trainer
US11688303B2 (en) 2010-06-30 2023-06-27 Strategic Operations, Inc. Simulated torso for an open surgery simulator
US11854427B2 (en) 2010-06-30 2023-12-26 Strategic Operations, Inc. Wearable medical trainer
US9737400B2 (en) 2010-12-14 2017-08-22 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US10973632B2 (en) 2010-12-14 2021-04-13 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US8663313B2 (en) 2011-03-03 2014-03-04 Boston Scientific Scimed, Inc. Low strain high strength stent
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US8696744B2 (en) 2011-05-27 2014-04-15 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
US8845719B2 (en) 2011-05-27 2014-09-30 Cormatrix Cardiovascular, Inc Extracellular matrix material conduits and methods of making and using same
WO2017034600A1 (en) 2015-08-21 2017-03-02 Cormatrix Cardiovascular, Inc. Extracellular matrix prostheses for treating damaged biological tissue
US11913166B2 (en) 2015-09-21 2024-02-27 Modern Meadow, Inc. Fiber reinforced tissue composites
US11530304B2 (en) 2016-02-15 2022-12-20 Modern Meadow, Inc. Biofabricated material containing collagen fibrils
US20170233945A1 (en) * 2016-02-15 2017-08-17 Modern Meadow, Inc. Method for biofabricating composite material
US11286354B2 (en) 2016-02-15 2022-03-29 Modern Meadow, Inc. Method for making a biofabricated material containing collagen fibrils
US10519285B2 (en) * 2016-02-15 2019-12-31 Modern Meadow, Inc. Method for biofabricating composite material
US10301440B2 (en) 2016-02-15 2019-05-28 Modern Meadow, Inc. Biofabricated material containing collagen fibrils
US11001679B2 (en) 2016-02-15 2021-05-11 Modern Meadow, Inc. Biofabricated material containing collagen fibrils
US11525042B2 (en) 2016-02-15 2022-12-13 Modern Meadow, Inc. Composite biofabricated material
US11542374B2 (en) 2016-02-15 2023-01-03 Modern Meadow, Inc. Composite biofabricated material
US10687934B2 (en) 2016-07-05 2020-06-23 Carlos A. Alvarado Serous membrane for ocular surface disorders
US11395726B2 (en) 2017-09-11 2022-07-26 Incubar Llc Conduit vascular implant sealing device for reducing endoleaks
US11214844B2 (en) 2017-11-13 2022-01-04 Modern Meadow, Inc. Biofabricated leather articles having zonal properties
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
US11352497B2 (en) 2019-01-17 2022-06-07 Modern Meadow, Inc. Layered collagen materials and methods of making the same
CN111467574B (en) * 2020-04-21 2021-01-26 四川大学 Biological valve material based on EDC/NHS activation and recombinant human collagen modification and preparation method thereof
CN111467574A (en) * 2020-04-21 2020-07-31 四川大学 Biological valve material based on EDC/NHS activation and recombinant human collagen modification and preparation method thereof

Also Published As

Publication number Publication date
GB1195992A (en) 1970-06-24
AT261800B (en) 1968-05-10
DE1617330B1 (en) 1971-01-28

Similar Documents

Publication Publication Date Title
US3562820A (en) Tubular sheet and strip form prostheses on a basis of biological tissue
RU2725723C2 (en) Warp knitted fabric and medical material
JP4291955B2 (en) Stent / graft / membrane and manufacturing method thereof
JP3765828B2 (en) Biologically reorganizable collagen graft prosthesis
JP4341049B2 (en) Tubular graft prosthesis made by biotechnology
CA2267408C (en) Tubular submucosal graft constructs
JP6297666B2 (en) Irregularly uniform three-dimensional tissue scaffold of absorbent and non-absorbable materials
ES2426668T3 (en) Non-antigenic ICL grafts crosslinked with peracetic acid
JP3799626B2 (en) Cardiovascular repair material and method for producing the same
US9125759B2 (en) Biocomposite medical constructs including artificial tissues, vessels and patches
JP3784832B2 (en) Surgical prosthesis
JP2007222662A (en) Artificial vascular valves
JP6411445B2 (en) Irregularly uniform three-dimensional tissue scaffold of absorbent and non-absorbable materials
JP2007268239A (en) Artificial blood vessel
JP4168740B2 (en) Collagen artificial blood vessel
JP4581318B2 (en) Biodegradable cylindrical body and biological tissue or organ regeneration device using the same
JPH07213597A (en) Twisted yarn of purified collagen-like substance, formed body of twisted yarn and their manufacture
JPH01131668A (en) Readsorptive net for surgery
WO2022138952A1 (en) Growth-induction member and tissue regeneration tool
WO2022138956A1 (en) Biodegradable or bioabsorbable tubular body and manufacturing method thereof
JPH0459900B2 (en)
JPH0459899B2 (en)
DE1617330C (en) Process for the production of tubular and smooth prostheses from biological tissue
AU2004216679B2 (en) Tubular submucosal graft constructs
MXPA99004526A (en) Tubular submucosal graft constructs