US3841585A - Constant bearing course homing missile - Google Patents

Constant bearing course homing missile Download PDF

Info

Publication number
US3841585A
US3841585A US00338476A US33847673A US3841585A US 3841585 A US3841585 A US 3841585A US 00338476 A US00338476 A US 00338476A US 33847673 A US33847673 A US 33847673A US 3841585 A US3841585 A US 3841585A
Authority
US
United States
Prior art keywords
missile
target
detector
signals
inputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00338476A
Inventor
Euterneck E Evers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US00338476A priority Critical patent/US3841585A/en
Application granted granted Critical
Publication of US3841585A publication Critical patent/US3841585A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2213Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/226Semi-active homing systems, i.e. comprising a receiver and involving auxiliary illuminating means, e.g. using auxiliary guiding missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • ABSTRACT A passive or semiactive homing missile using an optical sensor.
  • the sensor includes a wide-angle lens and a quadrature detector. When a moving target is acquired, signals are generated to turn the missile toward the target. These signals are integrated and are used to turn the sensor to lead the target. The missile will eventually settle on a constant bearing (collision) course with the target. If the target makes changes in speed or direction, the missile will change direction to re-establish a collision course to the target.
  • FIG. 1 is a schematic diagram of the invention.
  • FIG. 2 isa schematicdiagtamofa control loop .of the invention.
  • FIG. 1 one sees missile having a transparent nose 1! and control fins 1,2 and 13.
  • fins 12 and 13 are each half of a pair of fins, with the .drawing not showing the other half of 13, but showing both 112a and 12b.
  • the missile includes the usual rocket engine and warhead (both not shown). It is assumed in the invention that the missile travels with no roll at a constant speed until target engagement.
  • the missile may be launched by a booster engine and maintained in speed by a sustainer engine, in the well known manner. Until a target is sighted, the missile may cruise under control of an autopilot. When a target is sighted, the instant invention begins to work.
  • the invention includes a wide-angle lens (fisheye) together with a matrix sensor such as quadrature detector in nose ll of the missile.
  • Lens 14 and detector 15 are supported by frame 16.
  • the outputs from the four quadrants of detector 15 feed respective triggers 17a17d. These triggers block signals from 15 below some threshold level.
  • the outputs of Fla-17d feed inputs of respective AND gates l8a-18d.
  • the output signals a, b, c, d from l8a-l8d may respectively be indicative of a target above or below the longitudinal axis to the missile, and port and starboard of the axis.
  • These outputs a-d are applied to respective limiters l9a19d to give a constant value to any output from gates 18a-18d.
  • The'first two of thesealternatives areused in the artand usually involve pure ,pursuitcourseszto'the target.
  • the instantinvention uses alternative 3 .and is thereby .able to fly a collision course with the target'This is accomplished by feeding the signals applied to motors 21 and 22 to respective summers23and 24. If the signals from 20a-20d are derived fromtarget radiation (passive), they willbe rectangular waves, 23 and 24 will be integrators, and 23 and 24 .will provide triangular output waves to respecluminated by a pulsed laser or the like for semiactive homing, 15 will receive pulses and 23 and 24 will 'be accumulators.
  • FIG. 2 shows the simplified control 'loop for one axis .of rotation (pitchor yaw) for the inventive missile. As can be seen, the angular motion of the line-of-sight, and
  • motion from the sensor drive 30 (equivalent to servo motor .25 or 26) are effectively added, as schematically suggested by summing point 31, and the motions resulting from missile movement are subtracted in this point, with the sum-difference affecting the output of 32 32 corresponds to 14, 1'5, and 16 of FIG. 1).
  • the output of 32 affects controls 33 to cause rotation of the missile about an axis (pitch or yaw). Box 33 corresponds approximately to ones of elements 17-22 and 12 or 13 of FIG. 1.
  • the control signals for drive 30 are derived in summer 34, which corresponds to element 23 or 24 in FIG. 1.
  • the sensor and control may have hysterysis curves as shown in the boxes.
  • the triggers l7 and limiters 19 could be combined; or the limiters might be inserted between AND gates 18 and the triggers.
  • Amplifiers 20 might be inserted between and the triggers, between the triggers and the AND gates, or between the AND gates and the limiters.
  • Servo motors 21, 22, 25, and 26 may have substituted therefor pneumatic or hydralic activators. Although specifically described as usable against moving targets, the inventive missile would obviously be usable against fixed targets.
  • a homing missile having an elongated body with a longitudinal axis and yaw and pitch control means and including: optical sensor means including a wideangle lens and a matrix detector and means for supporting said lens and detector; at first set of respective operators for said control means; logic means connected to said detector for providing output control signals as inputs to said operators; a pair of summers having inputs connected to the inputs of said operators and each having an output; and a second set of respective operators attached between said body and said means for supporting and having inputs connected to said outputs of said summer.

Abstract

A passive or semiactive homing missile using an optical sensor. The sensor includes a wide-angle lens and a quadrature detector. When a moving target is acquired, signals are generated to turn the missile toward the target. These signals are integrated and are used to turn the sensor to lead the target. The missile will eventually settle on a constant bearing (collision) course with the target. If the target makes changes in speed or direction, the missile will change direction to re-establish a collision course to the target.

Description

rig
llite States Patent [191 Evers-Euterneck Oct. 15, 1974 CONSTANT BEARING COURSE HOMING MISSILE [75] Inventor: Ernst T. Evers-Euterneck,
Huntsville, Ala.
[73] Assignee: The United States of America as represented by the Secretary of the Army, Washington, DC.
[22] Filed: Mar. 6, 1973 [21] Appl. No.: 338,476
[52] US. Cl. 244/3.l5, 244/3.l7 [51] Int. Cl. F4lg 7/00, F4lg 9/00, F4lg 11/00 [58] Field of Search 244/315, 317; 343/55 MM [56] References Cited UNITED STATES PATENTS 3,041,011 6/1962 Dhanes 343/5 MM 3,416,752 12/1968 Hembree ..244/3.17
3,712,563 1/1973 Alpers 244/3.17
Primary Examiner-Samuel Feinberg Assistant ExaminerThomas H. Webb Attorney, Agent, or FirmEdward J. Kelly; Herbert Berl; Aubrey J. Dunn [5 7 ABSTRACT A passive or semiactive homing missile using an optical sensor. The sensor includes a wide-angle lens and a quadrature detector. When a moving target is acquired, signals are generated to turn the missile toward the target. These signals are integrated and are used to turn the sensor to lead the target. The missile will eventually settle on a constant bearing (collision) course with the target. If the target makes changes in speed or direction, the missile will change direction to re-establish a collision course to the target.
3 Claims, 2 Drawing Figures TRIGGER O l7d l8 TRIGGER j d l-v MOTOR LIMITER i1 CONSTANT BEARING COURSEsHOMING. MISSILE BACKGROUND OF THEJIN-VENTION .Various .types ,of homing .missiles are :known :in .the
art. Theseinclude ,those;using active, semiactive, and
passive homing. Regardless of the type, these missiles usually engage atarget withapure pursuitcourse. Any
otherttypeofcourse.normallyrequiresa complex-guidance computeron boardthemissile. Asis-well known, :the pure pursuit coursefhas-greater:timeeofsflightttotarget than acollision course and requiresihighmurnrates not required "by a collision course. 311115 thus advanta- ,geous.to'haveonesmissileflya collision course, if practical. The instant invention ,makes s ch .a ,thing practical, with a relatively simple system.
SUMMARY OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of the invention. FIG. 2 isa schematicdiagtamofa control loop .of the invention.
DETAILED DESCRIPTION OF THE lNvEl l'llON Referring now to FIG. 1, one sees missile having a transparent nose 1! and control fins 1,2 and 13. It should be understood that fins 12 and 13 are each half of a pair of fins, with the .drawing not showing the other half of 13, but showing both 112a and 12b. Naturally, the missile includes the usual rocket engine and warhead (both not shown). It is assumed in the invention that the missile travels with no roll at a constant speed until target engagement. The missile may be launched by a booster engine and maintained in speed by a sustainer engine, in the well known manner. Until a target is sighted, the missile may cruise under control of an autopilot. When a target is sighted, the instant invention begins to work.
The invention includes a wide-angle lens (fisheye) together with a matrix sensor such as quadrature detector in nose ll of the missile. Lens 14 and detector 15 are supported by frame 16. The outputs from the four quadrants of detector 15 feed respective triggers 17a17d. These triggers block signals from 15 below some threshold level. The outputs of Fla-17d feed inputs of respective AND gates l8a-18d. The output signals a, b, c, d from l8a-l8d may respectively be indicative of a target above or below the longitudinal axis to the missile, and port and starboard of the axis. These outputs a-d are applied to respective limiters l9a19d to give a constant value to any output from gates 18a-18d. These constant outputs are amplified to higher levels in amplifiers 200-2011. with respective amplified outputs applied to servo motors 21 and 22. The signal treatment used results in a bangbang" control system. Thus far. a missile capable of pure pursuit has been described, inasmuch as lens 14 and detector 15 have not been described as movable. There are three 2 alternatives at this point: 1) :14 and '15 can be fixed (strapped-down) to the missile body and notamovable with respect to the body,.2) l4 and :15and missilebody l0 canbecontrolled-to track the'target, and '3) :l4and .15,can-becontrolledto:track=the:target and themissile controlled tolead the target. The'first two of thesealternatives areused in the artand usually involve pure ,pursuitcourseszto'the target. The instantinvention uses alternative 3 .and is thereby .able to fly a collision course with the target'This is accomplished by feeding the signals applied to motors 21 and 22 to respective summers23and 24. If the signals from 20a-20d are derived fromtarget radiation (passive), they willbe rectangular waves, 23 and 24 will be integrators, and 23 and 24 .will provide triangular output waves to respecluminated by a pulsed laser or the like for semiactive homing, 15 will receive pulses and 23 and 24 will 'be accumulators.
FIG. 2 shows the simplified control 'loop for one axis .of rotation (pitchor yaw) for the inventive missile. As can be seen, the angular motion of the line-of-sight, and
motion from the sensor drive 30 (equivalent to servo motor .25 or 26) are effectively added, as schematically suggested by summing point 31, and the motions resulting from missile movement are subtracted in this point, with the sum-difference affecting the output of 32 32 corresponds to 14, 1'5, and 16 of FIG. 1). The output of 32 affects controls 33 to cause rotation of the missile about an axis (pitch or yaw). Box 33 corresponds approximately to ones of elements 17-22 and 12 or 13 of FIG. 1. The control signals for drive 30 are derived in summer 34, which corresponds to element 23 or 24 in FIG. 1. The sensor and control may have hysterysis curves as shown in the boxes.
Operation of the invention should be readily understood, in view of the drawings and of the detailed description above. One may fairly assume that the missile has been launched, has dropped its booster, has roll stabilized, and is cruising at constant speed on its sustainer engine. When its sensor detects a target, the missile, because of its bang-bang controls, executes a coarse maneuver toward the target, then starts a fine oscillation about the line-of-sightto the target. The signals used to execute the maneuvers are summed and asymetries from the bang-bang dwell times cause net output signals, which output signals are used to rotate the sensor contrary to the rotation of the line-of-sight in space. The turning velocity of the sensor with respect to the missile axes must be in accordance with the inequality mnx'. missile svuxor lim of sight where w is angular velocity. The bang-bang controls gradually establish symmetrical limit cycles and the average sum in the summer becomes 0. If the target tries evasive maneuvers, the missile automatically readjusts for a collision course.
While a specific embodiment of the invention has been shown and described, other embodiments should be obvious to one skilled in the art. For example, the triggers l7 and limiters 19 could be combined; or the limiters might be inserted between AND gates 18 and the triggers. Amplifiers 20 might be inserted between and the triggers, between the triggers and the AND gates, or between the AND gates and the limiters. Servo motors 21, 22, 25, and 26 may have substituted therefor pneumatic or hydralic activators. Although specifically described as usable against moving targets, the inventive missile would obviously be usable against fixed targets.
1 claim:
1. A homing missile having an elongated body with a longitudinal axis and yaw and pitch control means and including: optical sensor means including a wideangle lens and a matrix detector and means for supporting said lens and detector; at first set of respective operators for said control means; logic means connected to said detector for providing output control signals as inputs to said operators; a pair of summers having inputs connected to the inputs of said operators and each having an output; and a second set of respective operators attached between said body and said means for supporting and having inputs connected to said outputs of said summer.
2. The missile as defined in claim 1 wherein said summers are integrators.
3. The missile as defined in claim 1 wherein said sum-

Claims (3)

1. A homing missile having an elongated body with a longitudinal axis and yaw and pitch control means and including: optical sensor means including a wide-angle lens and a matrix detector and means for supporting said lens and detector; a first set of respective operators for said control means; logic means connected to said detector for providing output control signals as inputs to said operators; a pair of summers having inputs connected to the inputs of said operators and each having an output; and a second set of respective operators attached between said body and said means for supporting and having inputs connected to said outputs of said summer.
2. The missile as defined in claim 1 wherein said summers are integrators.
3. The missile as defined in claim 1 wherein said summers are accumulators.
US00338476A 1973-03-06 1973-03-06 Constant bearing course homing missile Expired - Lifetime US3841585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00338476A US3841585A (en) 1973-03-06 1973-03-06 Constant bearing course homing missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00338476A US3841585A (en) 1973-03-06 1973-03-06 Constant bearing course homing missile

Publications (1)

Publication Number Publication Date
US3841585A true US3841585A (en) 1974-10-15

Family

ID=23324965

Family Applications (1)

Application Number Title Priority Date Filing Date
US00338476A Expired - Lifetime US3841585A (en) 1973-03-06 1973-03-06 Constant bearing course homing missile

Country Status (1)

Country Link
US (1) US3841585A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176814A (en) * 1976-04-02 1979-12-04 Ab Bofors Terminally corrected projectile
US4231533A (en) * 1975-07-09 1980-11-04 The United States Of America As Represented By The Secretary Of The Air Force Static self-contained laser seeker system for active missile guidance
US4678142A (en) * 1985-07-25 1987-07-07 The United States Of America As Represented By The Secretary Of The Air Force Precision guided antiaircraft munition
US6028712A (en) * 1997-10-02 2000-02-22 Raytheon Company Optical system and method for providing corrected optical images
US6310730B1 (en) 1997-10-02 2001-10-30 Raytheon Company Optical system with asymmetric optical corrector
US6313951B1 (en) 1997-10-02 2001-11-06 Raytheon Company Optical system with zernike-shaped corrector
US6484966B1 (en) * 1997-08-21 2002-11-26 Lfk-Lenkflugkorpesysteme Gmbh Target-detection device for a missile system
US20070187546A1 (en) * 2006-01-27 2007-08-16 Lockheed Martin Corporation Binary optics SAL seeker (BOSS)
US20080272227A1 (en) * 2007-03-08 2008-11-06 Selex Sensors & Airborne Systems Limited Target tracking device and method
US20090256024A1 (en) * 2003-08-12 2009-10-15 Omnitek Partners Llc Projectile Having A Window For Transmitting Power and/or Data Into The Projectile Interior
US7781709B1 (en) * 2008-05-05 2010-08-24 Sandia Corporation Small caliber guided projectile
US20120292431A1 (en) * 2011-05-19 2012-11-22 Lockheed Martin Corporation Optical Window and Detection System Employing the Same
US20140085124A1 (en) * 2012-05-30 2014-03-27 Honeywell International Inc. Systems and methods for using radar-adaptive beam pattern for wingtip protection
US20150219423A1 (en) * 2014-02-03 2015-08-06 The Aerospace Corporation Intercepting vehicle and method
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism
US9568280B1 (en) 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
US10948909B2 (en) 2012-03-02 2021-03-16 Northrop Grumman Innovation Systems, Inc. Methods and apparatuses for engagement management of aerial threats
US10982935B2 (en) 2012-03-02 2021-04-20 Northrop Grumman Systems Corporation Methods and apparatuses for active protection from aerial threats
US11313650B2 (en) * 2012-03-02 2022-04-26 Northrop Grumman Systems Corporation Methods and apparatuses for aerial interception of aerial threats
US11947349B2 (en) 2012-03-02 2024-04-02 Northrop Grumman Systems Corporation Methods and apparatuses for engagement management of aerial threats

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041011A (en) * 1951-03-12 1962-06-26 Rand Corp Method and apparatus for vernier map matching and flight control therewith
US3416752A (en) * 1966-03-23 1968-12-17 Martin Marietta Corp Correlation guidance system having multiple switchable field of view
US3712563A (en) * 1963-12-04 1973-01-23 Us Navy Automatic path follower guidance system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041011A (en) * 1951-03-12 1962-06-26 Rand Corp Method and apparatus for vernier map matching and flight control therewith
US3712563A (en) * 1963-12-04 1973-01-23 Us Navy Automatic path follower guidance system
US3416752A (en) * 1966-03-23 1968-12-17 Martin Marietta Corp Correlation guidance system having multiple switchable field of view

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231533A (en) * 1975-07-09 1980-11-04 The United States Of America As Represented By The Secretary Of The Air Force Static self-contained laser seeker system for active missile guidance
US4176814A (en) * 1976-04-02 1979-12-04 Ab Bofors Terminally corrected projectile
US4678142A (en) * 1985-07-25 1987-07-07 The United States Of America As Represented By The Secretary Of The Air Force Precision guided antiaircraft munition
US6484966B1 (en) * 1997-08-21 2002-11-26 Lfk-Lenkflugkorpesysteme Gmbh Target-detection device for a missile system
US6028712A (en) * 1997-10-02 2000-02-22 Raytheon Company Optical system and method for providing corrected optical images
US6310730B1 (en) 1997-10-02 2001-10-30 Raytheon Company Optical system with asymmetric optical corrector
US6313951B1 (en) 1997-10-02 2001-11-06 Raytheon Company Optical system with zernike-shaped corrector
US8916809B2 (en) * 2003-08-12 2014-12-23 Omnitek Partners Llc Projectile having a window for transmitting power and/or data into the projectile interior
US20090256024A1 (en) * 2003-08-12 2009-10-15 Omnitek Partners Llc Projectile Having A Window For Transmitting Power and/or Data Into The Projectile Interior
US20070187546A1 (en) * 2006-01-27 2007-08-16 Lockheed Martin Corporation Binary optics SAL seeker (BOSS)
WO2008063679A3 (en) * 2006-01-27 2009-03-26 Lockheed Corp A binary optics sal seeker (boss)
US7575191B2 (en) * 2006-01-27 2009-08-18 Lockheed Martin Corporation Binary optics SAL seeker (BOSS)
US20100200690A1 (en) * 2007-03-08 2010-08-12 Selex Sensors And Airborne Systems Limited Target tracking device and method
US8405011B2 (en) 2007-03-08 2013-03-26 Selex Galileo Ltd. Target tracking device and method
US20080272227A1 (en) * 2007-03-08 2008-11-06 Selex Sensors & Airborne Systems Limited Target tracking device and method
US7781709B1 (en) * 2008-05-05 2010-08-24 Sandia Corporation Small caliber guided projectile
US20120292431A1 (en) * 2011-05-19 2012-11-22 Lockheed Martin Corporation Optical Window and Detection System Employing the Same
US8921748B2 (en) * 2011-05-19 2014-12-30 Lockheed Martin Corporation Optical window and detection system employing the same
US10948909B2 (en) 2012-03-02 2021-03-16 Northrop Grumman Innovation Systems, Inc. Methods and apparatuses for engagement management of aerial threats
US11947349B2 (en) 2012-03-02 2024-04-02 Northrop Grumman Systems Corporation Methods and apparatuses for engagement management of aerial threats
US11313650B2 (en) * 2012-03-02 2022-04-26 Northrop Grumman Systems Corporation Methods and apparatuses for aerial interception of aerial threats
US10982935B2 (en) 2012-03-02 2021-04-20 Northrop Grumman Systems Corporation Methods and apparatuses for active protection from aerial threats
US20140085124A1 (en) * 2012-05-30 2014-03-27 Honeywell International Inc. Systems and methods for using radar-adaptive beam pattern for wingtip protection
US9568280B1 (en) 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
US9222755B2 (en) * 2014-02-03 2015-12-29 The Aerospace Corporation Intercepting vehicle and method
US20150219423A1 (en) * 2014-02-03 2015-08-06 The Aerospace Corporation Intercepting vehicle and method
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism

Similar Documents

Publication Publication Date Title
US3841585A (en) Constant bearing course homing missile
US4037806A (en) Control system for rolling missile with target seeker head
US3111088A (en) Target seeking missile
US4008869A (en) Predicted - corrected projectile control system
GB1193304A (en) Projectiles having Means for Correcting the Trajectory
US3949955A (en) Monopulse receiver circuit for an anti-radar missile tracking system
US3756538A (en) Guided missile
GB1442822A (en) Stabilizing system
GB1116801A (en) Improvements in or relating to homing systems
US3735944A (en) Dual mode guidance and control system for a homing missile
GB847232A (en) Rocket launch control system
US3135053A (en) Tracking predicting systems
US4142695A (en) Vehicle guidance system
GB1309230A (en) Aiming devices
GB1164272A (en) Improvements in Guidance Systems for Projectiles or Missiles.
US3905563A (en) System for controlling a missile motion in the homing mode
US3337161A (en) Radio controlled missile with television camera
GB1441127A (en) Guidance system for an anti-aircraft missile
GB1161481A (en) Improvements relating to Guidance Beam Weapon Systems
US4560120A (en) Spin stabilized impulsively controlled missile (SSICM)
GB1056815A (en) Fire control system for weapons
US3617015A (en) Head-coupled missile-aiming device
US3206143A (en) Controller for guiding a missile carrier on the location curve of ballistic firing positions
GB904496A (en) Remote control and stabilizing apparatus
US3807660A (en) Missile flight control system