高级检索

电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台:SSS-MHD

孙承纬, 陆禹, 赵继波, 罗斌强, 谷卓伟, 王桂吉, 张旭平, 陈学秒, 周中玉, 李牧, 袁红, 张红平, 王刚华, 孙奇志, 文尚刚, 谭福利, 赵剑衡, 莫建军, 蔡进涛, 金云声, 贺佳, 种涛, 赵小明, 刘仓理. 电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台:SSS-MHD[J]. 爆炸与冲击, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127
引用本文: 孙承纬, 陆禹, 赵继波, 罗斌强, 谷卓伟, 王桂吉, 张旭平, 陈学秒, 周中玉, 李牧, 袁红, 张红平, 王刚华, 孙奇志, 文尚刚, 谭福利, 赵剑衡, 莫建军, 蔡进涛, 金云声, 贺佳, 种涛, 赵小明, 刘仓理. 电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台:SSS-MHD[J]. 爆炸与冲击, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127
SUN Chengwei, LU Yu, ZHAO Jibo, LUO Binqiang, GU Zhuowei, WANG Guiji, ZHANG Xuping, CHEN Xuemiao, ZHOU Zhongyu, LI Mu, YUAN Hong, ZHANG Hongping, WANG Ganghua, SUN Qizhi, WEN Shanggang, TAN Fuli, ZHAO Jianheng, MO Jianjun, CAI Jintao, JIN Yunsheng, HE Jia, CHONG Tao, ZHAO Xiaoming, LIU Cangli. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments[J]. Explosion And Shock Waves, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127
Citation: SUN Chengwei, LU Yu, ZHAO Jibo, LUO Binqiang, GU Zhuowei, WANG Guiji, ZHANG Xuping, CHEN Xuemiao, ZHOU Zhongyu, LI Mu, YUAN Hong, ZHANG Hongping, WANG Ganghua, SUN Qizhi, WEN Shanggang, TAN Fuli, ZHAO Jianheng, MO Jianjun, CAI Jintao, JIN Yunsheng, HE Jia, CHONG Tao, ZHAO Xiaoming, LIU Cangli. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments[J]. Explosion And Shock Waves, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127

电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台:SSS-MHD

  • 基金项目:
    国家自然科学基金(11672276, 10927201, 11327803, 11972031, 11176002, 12272364)
详细信息
    作者简介:

    孙承纬(1939- ),男,研究员,博士生导师, 中国工程院院士,sunchengwei39@163.com

    通讯作者: 陆 禹(1992- ),男,博士,助理研究员,dangyuanluyu@163.com
  • 中图分类号: O361.3

SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments

More Information
    Corresponding author: LU Yu, E-mail: dangyuanluyu@163.com
  • 超高压、超高密度物质状态生成和性质研究是当代极端物理学的重要前沿领域,电磁驱动的高能量密度物理实验对于该领域的意义尤为重要。这类实验虽然形式上多种多样,但在物理上有内在统一性,即均以力学守恒定律和宏观电磁理论为基本框架。为了建立统一数值模拟平台、依靠负载电流实验数据(或驱动电路真实数据)确定各种极端实验条件下负载构形的力学运动及其与各个物理场的耦合问题,将经受大量实际检验的冲击、爆轰动力学和激光效应计算的一维拉格朗日编码SSS,实质性扩展成为磁流体力学多物理场耦合编码SSS-MHD。对于具有典型意义的平面准等熵斜波压缩、高速平面固体飞片发射、固体套筒电磁内爆和炸药内爆磁通量压缩实验等各类高能量密度动力学实验案例的模拟计算结果表明,编码SSS-MHD计算与美国Z装置、中国CQ和CJ系列装置的实验及美国编码ALEGRA-1D和2D计算数据的相对偏差基本不超过5%。该数值模拟平台为极端材料动力学实验(包括气体、液体、化合物和金属)提供了有力的支撑,还将有助于多维磁流体力学多物理场编码的开发。

  • 加载中
  • 图 1  适合SSS-MHD编码模拟的各种类型电磁驱动高能量密度物理实验

    Figure 1.  Kinds of the magnetically-driven high-energy-density physics experiments suitably simulated with the SSS-MHD code

    图 2  SSS-MHD编码的计算流程

    Figure 2.  Flowchart of the SSS-MHD code

    图 3  SSS-MHD编码中实验负载构形的种类(红线表示回流导体)[29]

    Figure 3.  Types of experimental configurations in the SSS-MHD code (red curves standing for return conductors)[29]

    图 4  SSS编码中空腔区及邻区中格点的设置

    Figure 4.  Meshes in the cavity and nearby in the code SSS

    图 5  SSS-MHD编码中计算程序包MHDBLK的组成

    Figure 5.  Flow chart for the routine package MHDBLK in the SSS-MHD code

    图 6  磁驱动准等熵压缩实验的典型负载构形

    Figure 6.  Typical loading configurations for magnetically-driven isentropic compression experiments (ICE)

    图 7  对于美国Sandia实验室磁驱动等熵压缩实验Z-1220[33]的SSS-MHD模拟(算例1)

    Figure 7.  SSS-MHD simulations for theisentropic compression experiment Z-1220[33] at the Sandia National Laboratories, USA (example 1)

    图 8  对于流体物理研究所CQ装置磁驱动准等熵压缩实验的SSS-MHD模拟(算例2~4)

    Figure 8.  SSS-MHD simulations for magnetically-driven quasi-isentropic compression experiments at IFP (examples 2-4)

    图 9  对于Sandia实验室Z装置铝飞片实验“11 mm-2 s”的SSS-MHD模拟(算例5)

    Figure 9.  SSS-MHD simulations for the Al flyer experiment “11 mm-2 s”on the Z machine at the Sandia National Laboratories, USA (example 5)

    图 10  对于Sandia实验室Z装置上金属套筒电磁内爆实验的SSS-MHD模拟(算例6)

    Figure 10.  SSS-MHD simulation of magnetically-driven liner implosions on the Z-machine at the Sandia National Laboratories, USA (example 6)

    图 11  CJ-100型MC-1发生器的示意图和实物照片

    Figure 11.  Schematics and picture of the CJ-100 type MC-1 generator

    图 12  CJ-100型MC-1发生器磁通量压缩实验 及其性能的SSS-MHD模拟计算(算例7)

    Figure 12.  SSS-MHD simulations for the magnetic flux compression experiment and the performances of the CJ-100 type MC-1 generator (example 7)

    表 1  磁驱动准等熵压缩实验算例2~4的主要参数[14, 16]

    Table 1.  Parameters of examples 2-4 for magnetically-driven isentropic compression experiments[14, 16]

    算例实验充电电压/kV电极板台阶样品光学窗口速度峰值/(km·s−1)压力峰值/GPa
    材料厚度/mm材料厚度/mm实验电流计算电路计算电流计算电路计算
    2CQ4-13251[14, 16]85Cu1.350Ta1.013LiF1.5891.6071.61680.781.9
    1.3501.2011.6041.5861.57580.581.6
    3CQ4-12143[14, 16]75Al2.7800.7740.7700.7616.306.08
    3.0100.7790.7630.7576.316.09
    4CQ1.5-11202[14, 16]60Al0.353JO-91590.599LiF0.3060.2920.3134.274.61
    0.3530.7890.3330.3180.3264.634.82
    下载: 导出CSV
  • [1]

    HATFIELD P W, GAFFNEY J A, ANDERSON G J, et al. The data-driven future of high-energy-density physics [J]. Nature, 2021, 593(7859): 351–361. DOI: 10.1038/s41586-021-03382-w.

    [2]

    DRAKE R P. 高能量密度物理: 基础、惯性约束聚变和实验天体物理学 [M]. 孙承纬, 译. 北京: 国防工业出版社, 2013.

    [3]

    孙承纬. 电磁加载下的高能量密度物理问题研究 [J]. 高能量密度物理, 2007(1): 41–46.

    [4]

    孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用 [J]. 力学进展, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.

    SUN C W, ZHAO J H, WANG G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J]. Advances in Mechanics, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.

    [5]

    OLIPHANT T A, WITTE K H. RAVEN code: LA-10826 [R]. USA: Los Alamos National Laboratory, 1987.

    [6]

    ROBINSON A C, BRUNNER T A, CARROLL S, et al. ALEGRA: an arbitrary lagrangian-eulerian multimaterial, multiphysics code [C] // Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA, 2008: 1235. DOI: 10.2514/6.2008-1235.

    [7]

    孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    SUN C W. SSS: a code for computing one dimensional shock and detonation wave propagation [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    [8]

    GU Z W, SUN C W, ZHAO J H, et al. One-dimensional numerical simulation of laser-driven flyer plates [J]. Journal of Applied Physics, 2004, 96(6): 3486–3490. DOI: 10.1063/1.1781765.

    [9]

    YUAN H, TONG H F, LI M, et al. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling [J]. Journal of Applied Physics, 2012, 112: 023105. DOI: 10.1063/1.4737188.

    [10]

    刘启泰, 孙承纬, 胡熙静. SSS程序在电磁内爆中的数值模拟 [J]. 高压物理学报, 2004, 18(2): 183–187. DOI: 10.11858/gywlxb.2004.02.015.

    LIU Q T, SUN C W, HU X J. The numerical simulation of solid liner implosion in SSS code [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 183–187. DOI: 10.11858/gywlxb.2004.02.015.

    [11]

    贺佳, 赵剑衡, 谭福利, 等. 电爆炸箔驱动绝缘飞片的一维数值模拟 [J]. 高压物理学报, 2009, 23(6): 476–480. DOI: 10.11858/gywlxb.2009.06.013.

    HE J, ZHAO J H, TAN F L, et al. One-dimensional numerical simulation of a flyer accelerated by electrically exploded metal foil [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 476–480. DOI: 10.11858/gywlxb.2009.06.013.

    [12]

    孙承纬, 赵剑衡, 刘仓理, 等. 材料准等熵压缩实验研究进展 [M]. 北京: 中国原子能出版社, 2015.

    [13]

    孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵压缩和高速飞片的实验研究 [C] // 庆祝中国力学学会成立50周年暨中国力学学会学术大会. 北京, 2007: 17.

    [14]

    赵继波, 孙承纬, 罗斌强, 等. 磁驱动等熵压缩实验构形的磁流体力学计算模拟 [J]. 力学学报, 2014, 46(5): 685–693. DOI: 10.6052/0459-1879-14-019.

    ZHAO J B, SUN C W, LUO B Q, et al. Magneto-hydrodynamics modeling of configurations in magnetically driven isentropic compression experiments [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 685–693. DOI: 10.6052/0459-1879-14-019.

    [15]

    赵继波, 孙承纬, 谷卓伟, 等. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析 [J]. 物理学报, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.

    ZHAO J B, SUN C W, GU Z W, et al. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process [J]. Acta Physica Sinica, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.

    [16]

    ZHAO J B, SUN C W, LUO B Q, et al. Loading circuit coupled magnetohydrodynamic simulation of sample configurations in isentropic compression experiments [J]. IEEE Transactions on Plasma Science, 2015, 43(4): 1068–1076. DOI: 10.1109/TPS.2015.2405575.

    [17]

    王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.

    [18]

    罗斌强, 陈学秒, 王桂吉, 等. 磁驱动压-剪联合加载下材料动态强度的直接测量 [J]. 中国科学: 物理学 力学 天文学, 2016, 46(11): 114601. DOI: 10.1360/SSPMA2016-00184.

    LUO B Q, CHEN X M, WANG G J, et al. 磁驱动压-Direct measurement of material dynamic strength under high pressure using magnetically driven pressure-shear loading [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2016, 46(11): 114601. DOI: 10.1360/SSPMA2016-00184.

    [19]

    LUO B Q, SUN C W, ZHAO J H, et al. Unified numerical simulation of metallic foil electrical explosion and its applications [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 49–57. DOI: 10.1109/TPS.2012.2227827.

    [20]

    LUO B Q, WANG G J, MO J J, et al. Verification of conventional equations of state for tantalum under quasi-isentropic compression [J]. Journal of Applied Physics, 2014, 116: 193506. DOI: 10.1063/1.4902064.

    [21]

    ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85: 055110. DOI: 10.1063/1.4875705.

    [22]

    ZHAO X M, SUN C W, SUN Q Z, et al. Simulation on the compressed field-reversed configuration with alpha particle self-heating [J]. Plasma Physics and Controlled Fusion, 2019, 61(7): 075015. DOI: 10.1088/1361-6587/ab1e84.

    [23]

    REINOVSKY R E, ATCHISON W L, DIMONTE G, et al. Pulsed-power hydrodynamics: an application of pulsed-power and high magnetic fields to the exploration of material properties and problems in experimental hydrodynamics [J]. IEEE Transactions on Plasma Science, 2008, 36(1): 112–124. DOI: 10.1109/TPS.2007.914708.

    [24]

    SINARS D B, SWEENEY M A, ALEXANDER C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia [J]. Physics of Plasmas, 2020, 27(7): 070501. DOI: 10.1063/5.0007476.

    [25]

    SLUTZ S A, STYGAR W A, GOMEZ M R, et al. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators [J]. Physics of Plasmas, 2016, 23(2): 3933. DOI: 10.1063/1.4941100.

    [26]

    吴其芬, 李桦. 磁流体力学 [M]. 长沙: 国防科技大学出版社, 2007: 23–31.

    [27]

    JOHNSON J D. The Sesame database [C] // Proceedings of the 12th Symposium on Thermophysics Properties. Boulder, Colorado, USA, 1994: 1–12.

    [28]

    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.

    [29]

    赵继波. 一维磁流体动力学程序SSS-MHD研究和实验构形模拟计算 [D]. 四川绵阳:中国工程物理研究院, 2014: 78.

    ZHAO J B. Research on one-dimensional magneto-hydrodynamics code SSS-MHD and simulation on confingurations on experiments [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2014: 78.

    [30]

    陆禹. 柱筒构型的电磁内爆、压缩实验与磁流体力学数值模拟 [D]. 合肥: 中国科学技术大学, 2022: 26–29.

    LU Y. Experiments and MHD simulations on magnetically diriven implosion and compression of cylindrical configurations [D]. Hefei, Anhui, China: China University of Science and Technology, 2022: 26–29.

    [31]

    黄奕勇, 李星辰, 田野, 等. COMSOL多物理场仿真入门指南 [M]. 北京: 机械工业出版社, 2021.

    [32]

    LEMKE R W, KNUDSON M D, ROBINSON A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates [J]. Physics of Plasmas, 2003, 10(5): 1867–1874. DOI: 10.1063/1.1557530.

    [33]

    VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003.

    [34]

    LEMKE R W, DOLAN D H, DALTON D G, et al. Probing off-Hugoniot states in Ta, Cu, and Al to 1000GPa compression with magnetically driven liner implosions [J]. Journal of Applied Physics, 2016, 119(1): 015904. DOI: 10.1063/1.4939675.

    [35]

    WANG G J, SUN C W, TAN F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments [J]. Review of Scientific Instruments, 2008, 79: 053904. DOI: 10.1063/1.2920200.

    [36]

    LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019.

    [37]

    ALTGILBERS L L. 磁通量压缩发生器 [M]. 孙承纬, 译. 北京: 国防工业出版社, 2008: 1–5.

    [38]

    谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    [39]

    ZHOU Z Y, GU Z W, LUO H, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  246
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2023-04-10
修回日期:  2023-09-17
刊出日期:  2023-10-05

目录