US20010026491A1 - Semiconductor memory configuration with a refresh logic circuit, and method of refreshing a memory content of the semiconductor memory configuration - Google Patents

Semiconductor memory configuration with a refresh logic circuit, and method of refreshing a memory content of the semiconductor memory configuration Download PDF

Info

Publication number
US20010026491A1
US20010026491A1 US09/767,380 US76738001A US2001026491A1 US 20010026491 A1 US20010026491 A1 US 20010026491A1 US 76738001 A US76738001 A US 76738001A US 2001026491 A1 US2001026491 A1 US 2001026491A1
Authority
US
United States
Prior art keywords
memory
memory cells
memory cell
semiconductor memory
refreshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/767,380
Other versions
US6452852B2 (en
Inventor
Thomas Bohm
Georg Braun
Heinz Honigschmid
Thomas Rohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaris Innovations Ltd
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of US20010026491A1 publication Critical patent/US20010026491A1/en
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONIGSCHMID, HEINZ, ROHR, THOMAS, BRAUN, GEORG, BOHM, THOMAS
Application granted granted Critical
Publication of US6452852B2 publication Critical patent/US6452852B2/en
Assigned to QIMONDA AG reassignment QIMONDA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES AG
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QIMONDA AG
Assigned to POLARIS INNOVATIONS LIMITED reassignment POLARIS INNOVATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES AG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles

Definitions

  • the present invention relates to a semiconductor memory configuration having a memory cell field composed of a large number of memory cells.
  • the memory cells are driven via word lines and bit lines.
  • a refresh logic circuit for refreshing the memory content of the memory cells in the memory cell field is provided.
  • the memory cells contain a capacitor and a transistor, which are connected in series between a terminal for a potential and a node point.
  • a memory configuration of this type is disclosed, for example, in the form of a ferroelectric memory configuration, by the publication by Hiroki Koike et al. Titled, “60 ns 1 Mb Nonvolatile Ferroelectric Memory with Non-Driven Cell Plate Line Write/Read Scheme”, IEEE International Solid State Circuits Conference, pages 368 and 369, 1996.
  • the constant potential is in particular formed by the arithmetic mean of the two voltages that are used on a bit line to write information into a memory cell. This concept is generally known as the “VDD/2 concept”.
  • bit line be subdivided into k segments, which form local bit lines, and that the local bit lines be connected to a global bit line via k switches.
  • GR 00 P 1105 Furthermore, corresponding refresh logic circuits are generally known in other semiconductor memory configurations, such as DRAMs or EPROMs, and likewise prevent stored information being lost.
  • DRAMs because of the leakage currents that occur, the contents of all the memory cells are read out at regular time intervals and written back again.
  • EPROMs a loss of information because of the impermissible shifting of the storage transistor threshold voltage can make continual refreshing of the memory contents necessary.
  • U.S. Pat. No. 5,278,796 describes a refresh control circuit for a DRAM, which supplies a temperature-dependent refresh cycle.
  • a temperature sensor generates a temperature-dependent signal, which is compared in a comparator with a predefined reference voltage. The time period until the refresh cycle is next switched on is consequently controlled in a temperature-dependent manner.
  • U.S. Pat. No. 5,539,703 shows a DRAM having a refresh drive circuit.
  • a capacitor within the oscillator controlling the refresh is designed to be comparable with one or more capacitors in the memory cells.
  • the memory configuration contains a terminal for connecting to a potential and a memory cell field having a number of memory cells and a node point.
  • the memory cells each have a capacitor and a transistor connected in series between the terminal for the potential and the node point.
  • Word lines are connected to and drive the memory cells, and bit lines are connected to the memory cells.
  • a control circuit having a further node, a comparison circuit with an output, at least one memory cell and a refresh logic circuit connected to and refreshing a memory content of the memory cells in the memory cell field, is provided.
  • the at least one memory cell of the control circuit contains a capacitor and a transistor connected in series between the terminal for the potential and the further node.
  • the further node of the control circuit is connected to the comparison circuit, and the output of the comparison circuit controls the refresh logic circuit to cause the memory cells in the memory cell field to be refreshed.
  • a characteristic variable of at least one reference memory cell is compared with a reference value and, if required, a refresh logic circuit is activated.
  • the refresh operation in the memory cell field of the memory configuration is therefore not started in each case at rigid time intervals predefined by an internal timer circuit but is carried out only when it is actually needed.
  • the refresh cycle is in this case triggered on the basis of the electrical state of the memory cells. In particular, no energy is wasted for unnecessary refresh cycles, which is very important in the case of the particularly low energy consumption required for mobile applications.
  • the memory configuration has specific reference memory cells, whose characteristic variables are evaluated by the comparison circuit in order to be able to control the refresh operation as required.
  • These separate reference memory cells can be connected up to the comparison circuit in a simple way.
  • memory cells in the memory cell field which have been shown to be particularly bad in the storage function test, or those particularly affected by leakage currents, are defined as reference measurement cells and used when operating the semiconductor memory.
  • care must be taken that, in terms of process engineering and the environmental conditions which influence them, in particular the operating temperature, these should correspond as far as possible to the memory cells to be refreshed.
  • the at least one memory cell of the control circuit has a storage node
  • the comparison circuit is a differential amplifier which compares a potential of the storage node of the at least one memory cell of the control circuit with a reference voltage
  • the at least one memory cell of the control circuit is one of a plurality of reference memory cells whose characteristic variables are evaluated by the comparison circuit.
  • the refresh logic circuit refreshes both the memory content of the memory cells in the memory cell field and a memory content of the reference memory cells.
  • the reference memory cells of the control circuit and the memory cells of the memory cell field are ferroelectric memory cells.
  • an input capacitance of the comparison circuit is negligibly small compared to a capacitance of the reference memory cells.
  • a method of refreshing a memory content of memory cells in a memory cell field of a semiconductor memory configuration includes the steps of comparing an output signal of at least one further memory cell with a reference value; and starting a refresh cycle each time there is an impermissibly large difference between the output signal and the reference value for refreshing the memory cells of the memory cell field.
  • FIG. 1 is a circuit diagram of a prior art ferroelectric memory cell with defined leakage currents.
  • FIG. 2 is a graph of a hysteresis curve for a ferroelectric storage capacitor
  • FIG. 3 is a simplified circuit diagram of the ferroelectric memory configuration according to the invention.
  • FIG. 1 there is shown a known memory cell having a bit line BL, a word line WL, a selection transistor 1 , a storage capacitor 2 , whose one electrode is kept at a constant potential VPL together with other corresponding electrodes of the storage capacitors of further memory cells, and a memory node SN.
  • the sub-threshold current I SUbTh between a source and a drain of the selection transistor 1 , a leakage current I JL of a blocked pn junction via a corresponding diode to a substrate, and a leakage current I F through a capacitor dielectric are in each case illustrated by an appropriate arrow.
  • the sub-threshold current I SubTh can be compensated for by the bit line BL, when in the standby mode, being kept at the same potential as the common electrode, that is to say at the potential VPL.
  • a greater problem in comparison with the sub-threshold current is the leakage current I JL via the blocked pn junction.
  • the leakage current I JL there were previously two approaches to a solution. Both were based on the fact that the charge which flows away through the blocked pn junction is topped up, either continuously or cyclically, by the selection transistor 1 of the memory cell (in this respect, see also the reference specified above by Hiroki Koike).
  • switching on the selection transistor 1 cyclically has the disadvantage that, as a result of the leakage current I JL between the refresh cycles, interfering pulses occur on the storage capacitor 2 , and at most an amplitude of the pulses can be limited.
  • FIG. 2 in which a hysteresis curve of the ferroelectric storage capacitor 2 is plotted.
  • a plurality of interfering pulses 3 can in this way have the effect that ultimately the information or polarization stored in the capacitor 2 is lost.
  • FIG. 3 shows a ferroelectric memory configuration having a memory cell field 7 , a refresh logic circuit 8 , a comparison circuit 9 and a reference memory cell field 10 .
  • the refresh logic circuit 8 can be, for example, a circuit known from dynamic random access memory (DRAM) technology or the configurations described in the reference by Hiroki Koike indicated above.
  • the reference memory cell field 10 contains, for example, three parallel-connected ferroelectric memory cells, which each have a reference selection transistor 11 and a ferroelectric reference storage capacitor 12 .
  • the three memory cells are driven by a control word line SWL belonging to the refresh logic circuit 8 .
  • One electrode of the reference storage capacitors 12 is kept at the constant potential VPL, which is equal to the common potential of the storage capacitors 2 of the memory cell field 7 (FIG. 1).
  • the other electrode of the reference storage capacitor 12 in each case represents the storage node SN of the reference memory cell and is connected, for example, to a drain of the respective reference selection transistor 11 .
  • Sources of the reference selection transistors 11 are jointly connected to a comparison storage node VN, which is connected to a gate of an input transistor 13 of a differential amplifier which is known per se and used as the comparison circuit 9 . In this case, in order to avoid measurement errors, care must be taken that an input capacitance of the differential amplifier 9 is chosen to be small by comparison with a capacitance of the reference measurement cells 10 .
  • the differential amplifier 9 in each case compares the potential at one of the storage nodes SN or at the comparison storage node VN with a reference voltage VREF applied to a gate of a second input transistor 14 of the differential amplifier 9 .
  • VREF VPL ⁇ 0.1 V.
  • the voltage value is chosen on the basis, first, of the desired data security of the memory content of the memory cell field 7 and, second, of the desired low energy consumption arising from the refresh operation.
  • provision could also be made to set VREF VPL and to dimension the input transistors 13 , 14 of the differential amplifier 9 asymmetrically. In this way, an offset voltage is produced in the differential amplifier 9 , and performs the same function as the differential voltage of 100 mV specified above.
  • the comparison circuit 9 can be configured in such a way that only an upward or downward violation of a suitable reference value is evaluated, or that both deviations are registered and trigger a refresh operation.
  • An output of the differential amplifier 9 is connected to the refresh logic circuit 8 , which initiates the refresh operation for the memory cell field 7 of the ferroelectric semiconductor memory as required.
  • the refresh logic circuit 8 drives a leakage current compensation circuit having the leakage current compensation transistor 15 .
  • the circuit 8 switches the transistor 15 on briefly and, as a result activates a write circuit for the reference memory cells 10 , so that at the same time as the content of the memory cell field 7 is refreshed, the desired voltage VPL on the three storage nodes SN of the reference storage capacitors 12 is established again.
  • the gate of the leakage current compensation transistor 15 and the control word line SWL of the reference memory cells 10 are connected to corresponding outputs of the refresh logic circuit 8 .
  • the functioning of the ferroelectric memory configuration according to FIG. 3 is as follows.
  • the three reference selection transistors 11 and the leakage current compensation transistor 15 are switched on.
  • the potentials in the three storage nodes SN of the three reference storage capacitors 12 are set to the value VPL, and therefore the voltage dropped across the ferroelectric capacitor is reduced to 0 V.
  • the leakage current compensation transistor 15 is then switched off again.
  • the leakage currents described above may cause changes, differing from one another, in the potentials of the three storage nodes SN in the reference memory cells 10 , and corresponding, undesired changes in the potentials in the memory cells in the memory cell field 7 .
  • the potentials of the three storage nodes SN of the reference memory cells 10 are compared one after another with the reference value VREF by the respective reference selection transistor 11 and the differential amplifier 9 .
  • the reference selection transistors 11 can be switched on permanently or else switched on periodically by the differential amplifier 9 for the comparison measurement.
  • the refresh logic circuit 8 starts a refresh operation.
  • the content of the memory cells of the memory cell field 7 is refreshed.
  • the charge losses caused by the leakage currents in the reference memory cells 10 are compensated for, and the potentials of the three reference storage nodes SN are set to the initial value VPL again.
  • the differential amplifier 9 continues the above-described voltage comparison.
  • the invention can be used in all semiconductor memory types in which it is necessary to refresh the memory content, in particular in DRAMs, EPROMs and Flash memories.

Abstract

In a semiconductor memory configuration, a refresh operation is always started by a refresh logic circuit when a comparison circuit determines that there is a specific minimum difference when comparing a characteristic variable of at least one reference memory cell with a reference value (VREF).

Description

    BACKGROUND OF THE INVENTION
  • Field of the Invention [0001]
  • The present invention relates to a semiconductor memory configuration having a memory cell field composed of a large number of memory cells. The memory cells are driven via word lines and bit lines. A refresh logic circuit for refreshing the memory content of the memory cells in the memory cell field is provided. The memory cells contain a capacitor and a transistor, which are connected in series between a terminal for a potential and a node point. [0002]
  • A memory configuration of this type is disclosed, for example, in the form of a ferroelectric memory configuration, by the publication by Hiroki Koike et al. Titled, “60 [0003] ns 1 Mb Nonvolatile Ferroelectric Memory with Non-Driven Cell Plate Line Write/Read Scheme”, IEEE International Solid State Circuits Conference, pages 368 and 369, 1996. In order to be able to provide ferroelectric memory configurations with a high density, it is necessary to provide a common electrode for the storage capacitors and to keep the electrode at a constant potential. The constant potential is in particular formed by the arithmetic mean of the two voltages that are used on a bit line to write information into a memory cell. This concept is generally known as the “VDD/2 concept”. The problem in the case of memory cells composed of one transistor and one ferroelectric capacitor (1T1C cells) and in the case of memory cells composed of two transistors and two ferroelectric capacitors (2T2C cells) is that when the VDD/2 concept is applied, leakage currents in the substrate, so-called sub-threshold currents, and leakage currents through the blocked pn junction are unavoidable. Furthermore, leakage currents through the capacitor dielectric occur, whose absolute values are mostly negligibly low and which pre-assume a voltage drop at the memory capacitor that is already considerable. The magnitude of the various leakage currents is subject to severe fluctuations as a result of production tolerances and the high temperature dependence of the leakage currents.
  • In order to limit this power demand, in the ferroelectric memory configuration according to Published, German Patent Application DE 198 30 568 A1, it is proposed that the bit line be subdivided into k segments, which form local bit lines, and that the local bit lines be connected to a global bit line via k switches. GR [0004] 00 P 1105 Furthermore, corresponding refresh logic circuits are generally known in other semiconductor memory configurations, such as DRAMs or EPROMs, and likewise prevent stored information being lost. In the case of DRAMs, because of the leakage currents that occur, the contents of all the memory cells are read out at regular time intervals and written back again. In the case of EPROMs, a loss of information because of the impermissible shifting of the storage transistor threshold voltage can make continual refreshing of the memory contents necessary.
  • U.S. Pat. No. 5,278,796 describes a refresh control circuit for a DRAM, which supplies a temperature-dependent refresh cycle. A temperature sensor generates a temperature-dependent signal, which is compared in a comparator with a predefined reference voltage. The time period until the refresh cycle is next switched on is consequently controlled in a temperature-dependent manner. [0005]
  • U.S. Pat. No. 5,539,703 shows a DRAM having a refresh drive circuit. In order to match the refresh cycles to fluctuations in the manufacturing process, a capacitor within the oscillator controlling the refresh is designed to be comparable with one or more capacitors in the memory cells. [0006]
  • SUMMARY OF THE INVENTION
  • It is accordingly an object of the invention to provide a semiconductor memory configuration with a refresh logic circuit, and a method of refreshing a memory content of the semiconductor memory configuration which overcomes the above-mentioned disadvantages of the prior art devices and methods of this general type, in which the implementation of the refresh cycles are performed as beneficially as possible with regard to the necessary energy demand. [0007]
  • With the foregoing and other objects in view there is provided, in accordance with the invention, a semiconductor memory configuration. The memory configuration contains a terminal for connecting to a potential and a memory cell field having a number of memory cells and a node point. The memory cells each have a capacitor and a transistor connected in series between the terminal for the potential and the node point. Word lines are connected to and drive the memory cells, and bit lines are connected to the memory cells. A control circuit having a further node, a comparison circuit with an output, at least one memory cell and a refresh logic circuit connected to and refreshing a memory content of the memory cells in the memory cell field, is provided. The at least one memory cell of the control circuit contains a capacitor and a transistor connected in series between the terminal for the potential and the further node. The further node of the control circuit is connected to the comparison circuit, and the output of the comparison circuit controls the refresh logic circuit to cause the memory cells in the memory cell field to be refreshed. [0008]
  • According to the invention, in the semiconductor memory configuration and in the method of refreshing the memory content of the semiconductor memory configuration, with the aid of a comparison circuit, a characteristic variable of at least one reference memory cell is compared with a reference value and, if required, a refresh logic circuit is activated. The refresh operation in the memory cell field of the memory configuration is therefore not started in each case at rigid time intervals predefined by an internal timer circuit but is carried out only when it is actually needed. The refresh cycle is in this case triggered on the basis of the electrical state of the memory cells. In particular, no energy is wasted for unnecessary refresh cycles, which is very important in the case of the particularly low energy consumption required for mobile applications. [0009]
  • Advantageously, the memory configuration has specific reference memory cells, whose characteristic variables are evaluated by the comparison circuit in order to be able to control the refresh operation as required. These separate reference memory cells can be connected up to the comparison circuit in a simple way. Alternatively, it is also possible that, for example, memory cells in the memory cell field which have been shown to be particularly bad in the storage function test, or those particularly affected by leakage currents, are defined as reference measurement cells and used when operating the semiconductor memory. During the production and selection of the reference memory cells, care must be taken that, in terms of process engineering and the environmental conditions which influence them, in particular the operating temperature, these should correspond as far as possible to the memory cells to be refreshed. [0010]
  • In accordance with an added feature of the invention, the at least one memory cell of the control circuit has a storage node, and the comparison circuit is a differential amplifier which compares a potential of the storage node of the at least one memory cell of the control circuit with a reference voltage. [0011]
  • In accordance with an additional feature of the invention, the at least one memory cell of the control circuit is one of a plurality of reference memory cells whose characteristic variables are evaluated by the comparison circuit. And the refresh logic circuit refreshes both the memory content of the memory cells in the memory cell field and a memory content of the reference memory cells. [0012]
  • In accordance with another feature of the invention, the reference memory cells of the control circuit and the memory cells of the memory cell field are ferroelectric memory cells. [0013]
  • In accordance with a further feature of the invention, an input capacitance of the comparison circuit is negligibly small compared to a capacitance of the reference memory cells. [0014]
  • With the foregoing and other objects in view there is also provided, in accordance with the invention, a method of refreshing a memory content of memory cells in a memory cell field of a semiconductor memory configuration. The method includes the steps of comparing an output signal of at least one further memory cell with a reference value; and starting a refresh cycle each time there is an impermissibly large difference between the output signal and the reference value for refreshing the memory cells of the memory cell field. [0015]
  • In accordance with a concomitant mode of the invention, there is the step of refreshing a content of the further memory cell if there is an impermissibly large difference between the output signal and the reference value. [0016]
  • Other features which are considered as characteristic for the invention are set forth in the appended claims. [0017]
  • Although the invention is illustrated and described herein as embodied in a semiconductor memory configuration with a refresh logic circuit, and a method of refreshing a memory content of the semiconductor memory configuration, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. [0018]
  • The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram of a prior art ferroelectric memory cell with defined leakage currents. [0020]
  • FIG. 2 is a graph of a hysteresis curve for a ferroelectric storage capacitor; and [0021]
  • FIG. 3 is a simplified circuit diagram of the ferroelectric memory configuration according to the invention.[0022]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In all the figures of the drawing, sub-features and integral parts that correspond to one another bear the same reference symbol in each case. Referring now to the figures of the drawing in detail and first, particularly, to FIG. 1 thereof, there is shown a known memory cell having a bit line BL, a word line WL, a [0023] selection transistor 1, a storage capacitor 2, whose one electrode is kept at a constant potential VPL together with other corresponding electrodes of the storage capacitors of further memory cells, and a memory node SN. The sub-threshold current ISUbTh between a source and a drain of the selection transistor 1, a leakage current IJL of a blocked pn junction via a corresponding diode to a substrate, and a leakage current IF through a capacitor dielectric are in each case illustrated by an appropriate arrow. The sub-threshold current ISubTh can be compensated for by the bit line BL, when in the standby mode, being kept at the same potential as the common electrode, that is to say at the potential VPL.
  • A greater problem in comparison with the sub-threshold current is the leakage current I[0024] JL via the blocked pn junction. In order to overcome the problems associated with the leakage current IJL, there were previously two approaches to a solution. Both were based on the fact that the charge which flows away through the blocked pn junction is topped up, either continuously or cyclically, by the selection transistor 1 of the memory cell (in this respect, see also the reference specified above by Hiroki Koike). However, switching on the selection transistor 1 cyclically has the disadvantage that, as a result of the leakage current IJL between the refresh cycles, interfering pulses occur on the storage capacitor 2, and at most an amplitude of the pulses can be limited. However, such a procedure is difficult, since the leakage current IJL Of the blocked pn junction is not only subject to severe fluctuations but also rises considerably with temperature. In relation to the interfering pulses and their effects on the storage capacitor 2, reference should be made to FIG. 2, in which a hysteresis curve of the ferroelectric storage capacitor 2 is plotted. The hysteresis curve shows that, for example in the case of a voltage V=0 across the capacitor 2, there are two polarization states P which represent the stored information. If, for example as a result of an interfering pulse 3 caused by the leakage current IJL, the polarization P wanders from a point 4 to a point 5, and if, after the interfering pulse 3 has decayed again, the voltage V=0 is again present across the storage capacitor 2, then the polarization does not return to the point 4 but instead wanders to a point 6, which is placed below the point 4. A plurality of interfering pulses 3 can in this way have the effect that ultimately the information or polarization stored in the capacitor 2 is lost.
  • On the other hand, switching on the [0025] selection transistor 1 continually in order to protect the memory content, as distinct from switching on cyclically, is only possible if no access is made to the memory configuration. If an access is made, then only the relevant word line of the memory cell field is permitted to be active, while all the other word lines must be switched off. Switching off in this way is not a problem in itself. Following the memory access, however, in order to compensate for the leakage currents or in order to refresh the memory contents, all the word lines have to be switched on again, which, as a result of the high capacitive load on all the word lines as a whole, has the effect of a large rise in the power demand of the memory configuration.
  • In FIG. 3, there is shown according to the invention, a solution to this problem. FIG. 3 shows a ferroelectric memory configuration having a [0026] memory cell field 7, a refresh logic circuit 8, a comparison circuit 9 and a reference memory cell field 10. In the memory cell field 7, which is not specifically illustrated but is generally known (see FIG. 1), the common electrodes of the ferroelectric storage capacitors of memory cells are kept, according to FIG. 1, at the potential VPL which is typically 1.25 V, it being true that VPL=VDD/2. By the application of voltages which are greater or smaller than VPL to the other electrode of the storage capacitor 2 via the bit line BL, and by switching on the selection transistor 1 via the word line WL, a desired polarization state is produced in the dielectric of the storage capacitor 2, and therefore the information is stored in the ferroelectric memory cell (FIG. 1). The refresh logic circuit 8 can be, for example, a circuit known from dynamic random access memory (DRAM) technology or the configurations described in the reference by Hiroki Koike indicated above. The reference memory cell field 10 contains, for example, three parallel-connected ferroelectric memory cells, which each have a reference selection transistor 11 and a ferroelectric reference storage capacitor 12. The three memory cells are driven by a control word line SWL belonging to the refresh logic circuit 8. Alternatively, there is also the possibility of using a plurality of control word lines SWL, for example three thereof, to drive the three memory cells.
  • One electrode of the [0027] reference storage capacitors 12 is kept at the constant potential VPL, which is equal to the common potential of the storage capacitors 2 of the memory cell field 7 (FIG. 1). The other electrode of the reference storage capacitor 12 in each case represents the storage node SN of the reference memory cell and is connected, for example, to a drain of the respective reference selection transistor 11. Sources of the reference selection transistors 11 are jointly connected to a comparison storage node VN, which is connected to a gate of an input transistor 13 of a differential amplifier which is known per se and used as the comparison circuit 9. In this case, in order to avoid measurement errors, care must be taken that an input capacitance of the differential amplifier 9 is chosen to be small by comparison with a capacitance of the reference measurement cells 10. The differential amplifier 9 in each case compares the potential at one of the storage nodes SN or at the comparison storage node VN with a reference voltage VREF applied to a gate of a second input transistor 14 of the differential amplifier 9. For this voltage, it is for example true that VREF=VPL−0.1 V. Here, the voltage value is chosen on the basis, first, of the desired data security of the memory content of the memory cell field 7 and, second, of the desired low energy consumption arising from the refresh operation. Alternatively, provision could also be made to set VREF=VPL and to dimension the input transistors 13, 14 of the differential amplifier 9 asymmetrically. In this way, an offset voltage is produced in the differential amplifier 9, and performs the same function as the differential voltage of 100 mV specified above. The comparison circuit 9 can be configured in such a way that only an upward or downward violation of a suitable reference value is evaluated, or that both deviations are registered and trigger a refresh operation.
  • An output of the differential amplifier [0028] 9 is connected to the refresh logic circuit 8, which initiates the refresh operation for the memory cell field 7 of the ferroelectric semiconductor memory as required. In addition, the refresh logic circuit 8 drives a leakage current compensation circuit having the leakage current compensation transistor 15. The circuit 8 switches the transistor 15 on briefly and, as a result activates a write circuit for the reference memory cells 10, so that at the same time as the content of the memory cell field 7 is refreshed, the desired voltage VPL on the three storage nodes SN of the reference storage capacitors 12 is established again. For this purpose, the gate of the leakage current compensation transistor 15 and the control word line SWL of the reference memory cells 10 are connected to corresponding outputs of the refresh logic circuit 8.
  • The functioning of the ferroelectric memory configuration according to FIG. 3 is as follows. At the start, via the control word line SWL, the three reference selection transistors [0029] 11 and the leakage current compensation transistor 15 are switched on. As a result, the potentials in the three storage nodes SN of the three reference storage capacitors 12 are set to the value VPL, and therefore the voltage dropped across the ferroelectric capacitor is reduced to 0 V. The leakage current compensation transistor 15 is then switched off again. During the operation of the ferroelectric memory configuration, the leakage currents described above may cause changes, differing from one another, in the potentials of the three storage nodes SN in the reference memory cells 10, and corresponding, undesired changes in the potentials in the memory cells in the memory cell field 7. The potentials of the three storage nodes SN of the reference memory cells 10 are compared one after another with the reference value VREF by the respective reference selection transistor 11 and the differential amplifier 9. Here, the reference selection transistors 11 can be switched on permanently or else switched on periodically by the differential amplifier 9 for the comparison measurement.
  • As soon as the deviation at one of these three storage nodes is greater than is permissible, the refresh logic circuit [0030] 8 starts a refresh operation. In the process, in a manner known per se, the content of the memory cells of the memory cell field 7 is refreshed. In addition, the charge losses caused by the leakage currents in the reference memory cells 10 are compensated for, and the potentials of the three reference storage nodes SN are set to the initial value VPL again. The differential amplifier 9 continues the above-described voltage comparison. The invention can be used in all semiconductor memory types in which it is necessary to refresh the memory content, in particular in DRAMs, EPROMs and Flash memories. The features of the invention disclosed in the above description, the drawing and the claims may be important both individually and also in any desired combination for the implementation of the invention in its various configurations.

Claims (7)

We claim:
1. A semiconductor memory configuration, comprising:
a terminal for connecting to a potential;
a memory cell field containing a number of memory cells and a node point, said memory cells each having a capacitor and a transistor connected in series between said terminal for the potential and said node point;
word lines connected to and driving said memory cells;
bit lines connected to said memory cells; and
a control circuit having a further node, a comparison circuit with an output, at least one memory cell and a refresh logic circuit connected to and refreshing a memory content of said memory cells in said memory cell field, said at least one memory cell of said control circuit contains a capacitor and a transistor connected in series between said terminal for the potential and said further node, said further node of said control circuit is connected to said comparison circuit, and said output of said comparison circuit controls said refresh logic circuit to cause said memory cells in said memory cell field to be refreshed.
2. The semiconductor memory configuration according to
claim 1
, wherein said at least one memory cell of said control circuit has a storage node, and said comparison circuit is a differential amplifier which compares a potential of said storage node of said at least one memory cell of said control circuit with a reference voltage.
3. The semiconductor memory configuration according to
claim 1
, wherein said at least one memory cell of said control circuit is one of a plurality of reference memory cells whose characteristic variables are evaluated by said comparison circuit, and said refresh logic circuit refreshes both the memory content of said memory cells in said memory cell field and a memory content of said reference memory cells.
4. The semiconductor memory configuration according to
claim 3
, wherein said reference memory cells of said control circuit and said memory cells of said memory cell field are ferroelectric memory cells.
5. The semiconductor memory configuration according to
claim 3
, wherein an input capacitance of said comparison circuit is negligibly small compared to a capacitance of said reference memory cells.
6. A method of refreshing a memory content of memory cells in a memory cell field of a semiconductor memory configuration, which comprises the steps of:
comparing an output signal of at least one further memory cell with a reference value and starting a refresh cycle each time there is an impermissibly large difference between the output signal and the reference value for refreshing the memory cells of the memory cell field.
7. The method according to
claim 6
, which comprises refreshing a content of the further memory cell if there is an impermissibly large difference between the output signal and the reference value.
US09/767,380 2000-01-20 2001-01-22 Semiconductor memory configuration with a refresh logic circuit, and method of refreshing a memory content of the semiconductor memory configuration Expired - Lifetime US6452852B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10002374 2000-01-20
DE10002374.6 2000-01-20
DE10002374A DE10002374C2 (en) 2000-01-20 2000-01-20 Semiconductor memory arrangement with refresh logic circuit and method for refreshing the memory content of a semiconductor memory arrangement

Publications (2)

Publication Number Publication Date
US20010026491A1 true US20010026491A1 (en) 2001-10-04
US6452852B2 US6452852B2 (en) 2002-09-17

Family

ID=7628179

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/767,380 Expired - Lifetime US6452852B2 (en) 2000-01-20 2001-01-22 Semiconductor memory configuration with a refresh logic circuit, and method of refreshing a memory content of the semiconductor memory configuration

Country Status (7)

Country Link
US (1) US6452852B2 (en)
EP (1) EP1119004B1 (en)
JP (1) JP3795331B2 (en)
KR (1) KR100400527B1 (en)
CN (1) CN1162865C (en)
DE (2) DE10002374C2 (en)
TW (1) TWI253080B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438057B1 (en) * 2001-07-06 2002-08-20 Infineon Technologies Ag DRAM refresh timing adjustment device, system and method
WO2004029986A1 (en) * 2002-09-24 2004-04-08 Infineon Technologies Ag Historical information storage for integrated circuits
US6754125B2 (en) * 2001-02-02 2004-06-22 Stmicroelectronics Sa Method and device for refreshing reference cells

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898140B2 (en) * 1998-10-01 2005-05-24 Monolithic System Technology, Inc. Method and apparatus for temperature adaptive refresh in 1T-SRAM compatible memory using the subthreshold characteristics of MOSFET transistors
US6504780B2 (en) 1998-10-01 2003-01-07 Monolithic System Technology, Inc. Method and apparatus for completely hiding refresh operations in a dram device using clock division
CA2342508A1 (en) * 2001-03-30 2002-09-30 Atmos Corporation Reference cells with integration capacitor
JP3749851B2 (en) * 2001-10-25 2006-03-01 株式会社東芝 Ferroelectric semiconductor memory
US6867997B2 (en) * 2002-03-27 2005-03-15 Texas Instruments Incorporated Series feram cell array
US7027343B2 (en) * 2003-09-22 2006-04-11 Micron Technology Method and apparatus for controlling refresh operations in a dynamic memory device
US7274618B2 (en) * 2005-06-24 2007-09-25 Monolithic System Technology, Inc. Word line driver for DRAM embedded in a logic process
KR100791918B1 (en) * 2006-05-08 2008-01-04 삼성전자주식회사 Temperature sensor having self-calibration function and method there-of
JP2008071440A (en) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd Ferroelectric memory device and its control method
JP4364260B2 (en) * 2007-05-28 2009-11-11 株式会社東芝 Semiconductor memory device
US8422294B2 (en) * 2010-10-08 2013-04-16 Infineon Technologies Ag Symmetric, differential nonvolatile memory cell
US10276228B1 (en) * 2017-12-22 2019-04-30 Nanya Technology Corporation DRAM and method of operating the same
DE102021003389A1 (en) 2021-07-01 2023-01-05 Bundesrepublik Deutschland, vertr. durch das Bundesministerium der Verteidigung, vertr. durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr weapon silencer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278796A (en) * 1991-04-12 1994-01-11 Micron Technology, Inc. Temperature-dependent DRAM refresh circuit
US5392251A (en) * 1993-07-13 1995-02-21 Micron Semiconductor, Inc. Controlling dynamic memory refresh cycle time
US5488587A (en) * 1993-10-20 1996-01-30 Sharp Kabushiki Kaisha Non-volatile dynamic random access memory
TW301750B (en) * 1995-02-08 1997-04-01 Matsushita Electric Ind Co Ltd
US6067244A (en) * 1997-10-14 2000-05-23 Yale University Ferroelectric dynamic random access memory
JPH11144473A (en) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp Semiconductor memory device
FR2775382B1 (en) * 1998-02-25 2001-10-05 St Microelectronics Sa METHOD FOR CONTROLLING THE REFRESHMENT OF A MEMORY PLAN OF A DYNAMIC RAM MEMORY DEVICE AND CORRESPONDING RAM MEMORY DEVICE
DE19830568A1 (en) 1998-07-08 1999-10-14 Siemens Ag Ferroelectric memory storage arrangement
KR100328556B1 (en) * 1999-12-23 2002-03-15 박종섭 Self reflesh controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754125B2 (en) * 2001-02-02 2004-06-22 Stmicroelectronics Sa Method and device for refreshing reference cells
US6438057B1 (en) * 2001-07-06 2002-08-20 Infineon Technologies Ag DRAM refresh timing adjustment device, system and method
KR20030011257A (en) * 2001-07-06 2003-02-07 인피네온 테크놀로지스 아게 Dram refresh timing adjustment device, system, and method
WO2004029986A1 (en) * 2002-09-24 2004-04-08 Infineon Technologies Ag Historical information storage for integrated circuits

Also Published As

Publication number Publication date
DE10002374C2 (en) 2002-10-17
US6452852B2 (en) 2002-09-17
KR20010100770A (en) 2001-11-14
DE10002374A1 (en) 2001-08-02
JP3795331B2 (en) 2006-07-12
EP1119004B1 (en) 2008-10-15
CN1162865C (en) 2004-08-18
KR100400527B1 (en) 2003-10-08
TWI253080B (en) 2006-04-11
JP2001229667A (en) 2001-08-24
CN1315731A (en) 2001-10-03
DE50015406D1 (en) 2008-11-27
EP1119004A1 (en) 2001-07-25

Similar Documents

Publication Publication Date Title
US6452852B2 (en) Semiconductor memory configuration with a refresh logic circuit, and method of refreshing a memory content of the semiconductor memory configuration
US6597614B2 (en) Self refresh circuit for semiconductor memory device
US6587367B1 (en) Dummy cell structure for 1T1C FeRAM cell array
EP0173980B1 (en) Semiconductor integrated circuit device
US20070171745A1 (en) BLEQ driving circuit in semiconductor memory device
KR100502659B1 (en) Semiconductor Memory device with self- refresh device for reducing power
US6967891B2 (en) Information processing apparatus and semiconductor memory
CN109390008B (en) Apparatus and method for reading memory cells
US7940549B2 (en) DRAM positive wordline voltage compensation device for array device threshold voltage and voltage compensating method thereof
JPH04344387A (en) Semiconductor memory device using refresh-request- signal generator for executing refresh operation in response to temperature of element
KR100500944B1 (en) Nonvolatile ferroelectric memory device
US6038187A (en) Process for controlling a memory-plane refresh of a dynamic random-access memory and corresponding random-access memory device
US11133051B2 (en) Memory devices and methods of controlling an auto-refresh operation of the memory devices
US20010038557A1 (en) Circuit configuration for generating a reference voltage for reading a ferroelectric memory
US5694365A (en) Semiconductor memory device capable of setting the magnitude of substrate voltage in accordance with the mode
CN115171751A (en) Memory, access method thereof and electronic equipment
US20050146913A1 (en) Zero cancellation scheme to reduce plateline voltage in ferroelectric memory
US6195281B1 (en) Apparatus for generating reference voltage in ferroelectric memory device
US7599230B2 (en) Semiconductor memory apparatus and method of driving the same
US6445607B2 (en) Method for operating an integrated memory
KR100573837B1 (en) Nonvolatile ferroelectric memory device
KR100833587B1 (en) Semiconductor memory device for improving refresh characteristics
KR100502660B1 (en) Semiconductor Memory Device having a stable cell-plate voltage
US20010055220A1 (en) Voltage regulation device for reference cell of a dynamic random access memory, reference cell, memory and associated process
KR20030000724A (en) Semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOHM, THOMAS;BRAUN, GEORG;HONIGSCHMID, HEINZ;AND OTHERS;REEL/FRAME:012871/0262;SIGNING DATES FROM 20010219 TO 20010403

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: QIMONDA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES AG;REEL/FRAME:023828/0001

Effective date: 20060425

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QIMONDA AG;REEL/FRAME:035623/0001

Effective date: 20141009

AS Assignment

Owner name: POLARIS INNOVATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES AG;REEL/FRAME:036539/0196

Effective date: 20150708