US20100241185A1 - Steerable epicardial pacing catheter system placed via the subxiphoid process - Google Patents

Steerable epicardial pacing catheter system placed via the subxiphoid process Download PDF

Info

Publication number
US20100241185A1
US20100241185A1 US12/741,710 US74171008A US2010241185A1 US 20100241185 A1 US20100241185 A1 US 20100241185A1 US 74171008 A US74171008 A US 74171008A US 2010241185 A1 US2010241185 A1 US 2010241185A1
Authority
US
United States
Prior art keywords
catheter
epicardial pacing
epicardial
pacing catheter
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/741,710
Inventor
Srijoy Mahapatra
George T. Gillies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Virginia Patent Foundation
Original Assignee
University of Virginia Patent Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Virginia Patent Foundation filed Critical University of Virginia Patent Foundation
Priority to US12/741,710 priority Critical patent/US20100241185A1/en
Assigned to UNIVERSITY OF VIRGINIA reassignment UNIVERSITY OF VIRGINIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAHAPATRA, SRIJOY, GILLIES, GEORGE T.
Assigned to UNIVERSITY OF VIRGINIA PATENT FOUNDATION reassignment UNIVERSITY OF VIRGINIA PATENT FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF VIRGINIA
Publication of US20100241185A1 publication Critical patent/US20100241185A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium

Definitions

  • the present technology relates generally to the field of medical devices to be used for cardiological procedures. More specifically, the technology is in the subfield of catheterization devices to be used for epicardial pacing.
  • LV leads left ventricular leads
  • the electrical lead can not be placed directly into the LV due to the unacceptably high risk of stroke.
  • the lead must, therefore, be placed on the surface of the LV.
  • a lead is threaded through the right atrium (RA) using a venous system, and passed through the coronary sinus (CS) to any of a number of small veins in communication with the surface of the LV.
  • RA right atrium
  • CS coronary sinus
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention includes an apparatus and means for treating congestive heart failure and arrhythmias (both bradycardias and tachycardias) of the heart.
  • the invention provides for a novel means and method of placing an epicardial lead within a patient for the purpose of permanent multi-site, cardiac pacing and defibrillation, including left ventricular pacing.
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention includes a lead that paces LV, RV, LA and RA at the same time or in sequence. It could even pace two separate points on the same chamber (the LV or the RV) at the same time or at some offset. This has an important advantage, for example, if a region of tissue ever dies in heart attack, the present invention method can still pace from elsewhere.
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention may include placing a bipolar pacing lead through a subxiphoid incision and then channeling it back to a pacemaker.
  • the procedure may evolve through three distinct stages. In the earliest stage, one would place the lead on the left ventricle and tunnel it underneath the pectoral muscle back to the chest wall where the pacemaker would normally be placed. In the second, one would place the lead back to the subxiphoid process, attach it to a battery that is positioned just on the outside of the xiphoid process and have it wirelessly communicate with the main pacemaker. Lastly one would place a button-like object right on the top of the left ventricle and then communicate wirelessly back to the main pacemaker. Still yet, another embodiment of the means and method of the invention may include having the battery, anode and cathode means all compounded on the end of the lead so that there would not be any need to have another excision to bring any of the components back out of the heart.
  • An aspect of an embodiment or partial embodiment of the present invention comprises an epicardial pacing system.
  • the system may comprise: an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface.
  • the epicardial pacing catheter comprising: a proximal portion, distal portion, and a longitudinal structure there between; and at least one electrode in communication with the distal portion, wherein the at least one electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
  • An aspect of an embodiment or partial embodiment of the present invention comprises a method for use with an epicardial pacing catheter.
  • the method may comprise: disposing the epicardial pacing catheter in the middle mediastinum of the thorax of a subject; and pacing the heart at one or more locations with electrical energy from an at least one electrode; and at least partially insulating the electrical energy to allow pacing of the heart without damage to adjacent anatomical structures.
  • the epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing (and/or other diagnostic or therapeutic procedure) of the heart at one or more locations on the epicardial surface.
  • the epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
  • FIG. 1 schematically illustrates the overall configuration of the epicardial pacing catheter system.
  • FIG. 2 schematically illustrates the pericardium and heart alone ( FIG. 2(A) ) and an example embodiment in position relative to the heart ( FIG. 2(B) ).
  • FIG. 3 schematically illustrates an example embodiment passively disposed within the pericardial sack of the heart.
  • FIGS. 4 (A)-(C) schematically illustrate a number of exemplary embodiments of the steering means employed to position the distal portion of an exemplary embodiment of the epicardial pacing catheter in un-tensioned, partial steering, and full steering modes, respectively.
  • FIGS. 5(A)-5(D) schematically illustrate a number of exemplary embodiments of the epicardial pacing catheter 10 near the distal portion.
  • FIGS. 6(A)-6(F) schematically illustrate cross sectional views of an exemplary embodiment of the technology from the most distal end to a more proximal point.
  • FIGS. 7(A) and (B) schematically illustrate cross sectional views of an exemplary embodiment of the most proximal portion of an exemplary embodiment of the epicardial pacing catheter and the most distal portion of an exemplary embodiment of the control means, respectively.
  • FIGS. 8 (A)-(C) schematically illustrate cross-sectional views of an example embodiment further comprising a stabilization means for stabilizing the example embodiment.
  • the stabilization means illustrated in an un-deployed position, partially deployed position, and deployed position, respectively.
  • FIG. 9 schematically illustrates an example embodiment of the epicardial pacing catheter further comprising deployable electrodes fixed or adjacent to the heart.
  • FIG. 10(A) schematically illustrates a top view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 10(B) schematically illustrates a bottom view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 10(C) schematically illustrates an axial view of an exemplary embodiment of the epicardial pacing catheter looking at the distal tip of the insulating hood.
  • FIG. 10(D) schematically illustrates a perspective view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 11(A)-11(E) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter from a point located proximal to the at least one electrode and distal to the distal point of curvature to a point located at the most proximal point of the epicardial pacing catheter.
  • FIG. 11(F) schematically illustrates a cross sectional view of an exemplary embodiment of the control handle at the most distal point.
  • FIG. 12(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in an un-deployed state.
  • FIG. 12(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in a fully-deployed state.
  • FIG. 13(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable screw or the like in an un-deployed state.
  • FIG. 13(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable screw or the like in a fully-deployed state.
  • FIG. 14(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in an un-deployed state.
  • FIG. 14(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in a fully-deployed state.
  • FIG. 15(A) schematically illustrates an example embodiment of an external control handle.
  • FIG. 15(B) schematically illustrates an example embodiment of the proximal steering control means or a least part of the steering control means integral to the control handle.
  • FIG. 15(C) schematically illustrates an example embodiment wherein the proximal steering control means or a least part of the steering control means integral to the control handle has been activated.
  • FIG. 1 schematically illustrates an overview of an exemplary embodiment of the epicardial pacing system 5 comprising an epicardial pacing catheter 10 in communication with at least one electrode 43 , a control means or control handle 150 , an interface member 162 , a processor 164 or computer, power supply 166 or battery, or voice control instrumentation/system 168 .
  • the control means 150 may be in communication with the proximal portion of the catheter 10 , wherein the control means 150 is controllably connected to at least one electrode 43 .
  • the control means may be a control handle or controller as desired or required.
  • the control handle (or control means) may be removable.
  • the epicardial pacing catheter 10 may further comprises a processor 164 or computer.
  • the processor 164 may be in communication with said epicardial pacing catheter 10 and system.
  • the processor 164 may be located at or near the patient's shoulder, for example.
  • the epicardial pacing catheter 10 further comprises an interface member 162 in communication with said epicardial pacing catheter 10 .
  • the interface member 162 may be in remote and/or local communication with the processor 164 , pacing system 5 , catheter 10 , controller 150 , power supply 166 , and/or voice control instrumentation to provide information to and/or from a patient, physician, technician, or a clinician. Further, any of the components and systems illustrated in FIG. 1 may be in communication with each other, as well as other systems, computers, devices, printers, displays, PDAs, networks, memory storage, and voice control instrumentations as desired or required.
  • the epicardial pacing system 5 may comprise a power supply 166 .
  • the power supply 166 may comprise a small battery located at the subxiphoid area, preferably of a silicone silver-gallium kind designed specifically for use in implantable cardiac defibrillators (ICDs).
  • ICDs implantable cardiac defibrillators
  • the power characteristics of the particular battery may be such that it can maintain the same voltage for a long period of time before falling off suddenly.
  • the epicardial pacing system 5 and epicardial pacing catheter 10 may further comprise a wireless communication system, wherein the processor 164 , power supply 166 , voice control instrumentation 168 , interface member 162 or desired components of the system 5 may be wirelessly connected to one another.
  • the battery and processor 164 are both located in the subxiphoid area.
  • any of the components or modules referred to with regards to any of the present technology embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented. Moreover, the various components may be communicated locally and/or remotely with any user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardwares.
  • the epicardial pacing catheter 10 in accordance with the present technology may comprise a proximal portion, a distal portion, and a longitudinal structure there between. It should be appreciated that the distal portion may be considered at the distal end tip of the epicardial pacing catheter 10 ; or a portion or segment at or in the vicinity of the distal end tip of the epicardial pacing catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the distal end of the catheter 10 as desired or required. The length and location of the distal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
  • proximal portion may be considered the tip of the beginning of the catheter 10 ; or a portion or segment at or in the vicinity of the proximal end of the catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the proximal end of the catheter 10 as desired or required.
  • the length and location of the proximal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
  • the proximal portion, distal portion and longitudinal structure there between may be integrally formed from a biocompatible material having requisite strength and flexibility for deployment within a patient.
  • the proximal portion, distal portion, and longitudinal structure there between may have a lubricious outer surface comprising a material having a low coefficient of friction, such as, but not limited to, silicone, polyurethane, or Teflon, or combination thereof.
  • the proximal portion, distal portion, and longitudinal structure there between may further have an outer surface comprising a drug eluting surface and/or a surface impregnated with sirilimus to prevent the production of fibrosis within a patient.
  • the longitudinal structure may be between about 15 cm and about 100 cm in length, and between about 2 mm and about 6 mm in diameter. It should be appreciated that the length of the longitudinal structure may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • the cross section of the longitudinal structure comprises an oval, circle, ellipse, polygon, or semi-circular shape.
  • the longitudinal structure may be any one of: lumen, conduit, channel, passage, pip, tunnel or bounded tubular surface.
  • the epicardial pacing catheter 10 further comprises at least one electrode 43 in communication with the distal portion, wherein the at least one electrode 43 is insulated on at least one side to allow pacing of the heart without damage to adjacent structures.
  • the at least one electrode 43 may be constructed of platinum, gold, silver, iridium, or any alloy thereof, or other conducting materials known in the art.
  • the at least one electrode 43 may comprise a roughened, profiled, or otherwise prepared surface to increase the total surface area for energy transmission.
  • the at least one electrode 43 may be semi-cylindrical or arc-like in shape, and may be contoured to be compatible with proximate anatomical structures.
  • the at least one electrode 43 may be between about 0.3 mm and about 4 mm in length, and may be spaced between about 1 mm and about 25 mm from each other.
  • the at least one electrode 43 may be a pair of electrodes, commonly referred to as an anode and cathode in the art.
  • the at least one electrode 43 may be deployable. It should be appreciated that the length of the electrodes may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • various sheaths, catheters and guidewires, or any related components disclosed herein may have a circular or oval-shaped cross-section or various combinations thereof. Further, it should be appreciated that various sheaths, catheters and guidewires, or any related components disclosed herein may have any variety of cross sections as desired or required for the medical procedure or anatomy.
  • any of the components or modules referred to with regards to any of the present invention embodiments discussed herein may be a variety of materials and/or composites as necessary or required. Still further, it should be appreciated that any of the components or modules (or combination thereof) may provide shape, size and volume contoured by adjusting its geometry and flexibility/rigidity according to the target location or anatomy (or region, including structure and morphology of any location) being treated.
  • FIG. 2(A) schematically illustrates the pericardium and heart alone.
  • the pericardium 22 is shown in close proximity to the epicardium 23 .
  • FIG. 2(B) schematically illustrates three contiguous sections of an example embodiment implanted around the heart 21 .
  • the epicardial pacing catheter 10 of the epicardial pacing system 5 is positioned in the pericardial space, cavity or sack 24 , or the area between the pericardium 22 and epicardium 23 . All of the electrodes 43 are facing the heart 21 .
  • the epicardial pacing catheter 10 further comprises outward facing bumper tabs 31 and inward facing friction tabs 32 to stabilize the epicardial pacing catheter 10 from moving within the pericardial sack 24 , once it is implanted.
  • an aspect of an embodiment of the present technology may be implemented with an access needle (introducer needle), conduit or the like.
  • the access needle or conduit is adapted to be inserted into the epicardial region or other body part or body space so as to provide an access or guideway for the epicardial pacing catheter 10 .
  • An example of an access system is disclosed in PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, ā€œAccess Needle Pressure Sensor Device and Method of Use,ā€ of which is hereby incorporated by reference herein in its entirety. See for example, but not limited thereto, FIGS. 2 and 5 of the '056643 PCT Application.
  • the access needle sensor device or the like serves as a guideway for introducing other devices into the pericardium 22 , for instance, sheath catheters that might subsequently be employed for procedures within the pericardium 22 or other applicable regions, space or anatomy.
  • Other devices that the access device may accommodate with the practice of this invention include, but are not limited thereto, the following: ablation catheters, guide wires, other catheters, visualization and recording devices, drugs, and drug delivery devices, lumens, steering devices or systems, drug or cell delivery catheters, fiber endoscopes, suctioning devices, irrigation devices, electrode catheters, needles, optical fiber sensors, sources of illumination, vital signs sensors, and the like. These devices may be deployed for procedures in an integral body part or space.
  • any data, feedback, readings, or communication from the system may be received by the user, clinician, physician, or technician or the like by visual graphics, audible signals (such as voice or tones, for example) or any combination thereof. Additionally, the data, feedback, or communication may be reduced to hard copy (e.g., paper) or computer storage medium. It should be appreciated that the pressure related readings and data may be transmitted not only locally, but remotely as well.
  • an aspect of the invention may be in the field of voice control over medical systems and devices of use in specialized electrophysiology procedures that employ subxiphoid access for the purpose of navigating an interventional or surgical probe onto the epicardial surface of the heart, via pericardial transit.
  • the invention may be in the specialized category of voice control over instruments and systems that measure the intrathoracic and intrapericardial pressures during the process of navigating said intrathoracic or surgical probe within the patient following subxiphoid insertion.
  • An aspect of an embodiment or partial embodiment of the subject invention is one of providing the working electrophysiologist with a means and method for controlling the operational parameters (e.g., the display functions) of diagnostic and therapeutic cardiological equipment by voice, thus eliminating either the need to temporarily take their hands off the patient or the need to have an additional EP Lab technician available to perform such tasks. (Such personnel are often needed to insure that the clinician need never touch anything outside the sterile field.).
  • voice control instrumentation that teach applications in medical applications but not in electrophysiological approaches to cardiological problems include U.S. Pat. Nos.
  • present invention system and method may further comprise imaging said the access needle and the epicardial pacing system (and components thereof) with at least one of magnetic resonance imaging, computed tomography, fluoroscopy, or other radiological modalities.
  • readings are provided from said sensing of pressure for navigating said needle access and the epicardial pacing system (and components thereof).
  • the deploying of the epicardial pacing catheter 10 into the pericardial sack 24 may be minimally invasive, non-surgical, and/or interventional.
  • the deploying of the epicardial pacing catheter 10 may be performed by a non-surgeon and/or cardiologist through use of an access needle and subsequent passage of a guidewire.
  • the access needle may first be inserted through the chest and into the pericardium 22 , with the guidewire then put in place.
  • the epicardial pacing catheter 10 may then be coaxially slid over the guidewire to access the pericardial sack 24 .
  • the insertion of a sheath into the pericardial sack 24 may be aided by the use of an access needle and subsequent passage of a guidewire.
  • the access needle may first be inserted into the epicardium, with the guidewire then put in place.
  • the sheath may then be coaxially slid over the guidewire to access the pericardial sack 24 .
  • the epicardial pacing catheter 10 may then be inserted through the sheath to reach the epicardium 23 .
  • the guideway provides coaxial alignment for the at least one of guide wire, sheath or catheter, which can be inside or outside the needle.
  • the at least one guide wire, sheath, or catheter can also be coaxially aligned with one another.
  • multiple lumens may be implement and configured between the plurality of distal apertures and plurality proximal apertures. It should be appreciated that coaxial alignment does not need to be exact, but rather one conduit, lumen, sheath, or guidewire slid outside or inside of another.
  • an epicardial access needle-stick may be implemented in the subxiphoid area of the chest and the epicardial pacing catheter 10 only need be advanced a short distance to get to the heart 21 . However, it may immediately be steered though an acute angle to avoid the heart itself Because of this, aspects of the present invention devices and those used in conventional techniques can be contrasted.
  • conventional endocardial catheters may typically be up to 100 cm in length or longer since they must go from the shoulder to the heart, while an embodiment of the present technology could be, for example, about 20 cm or less since it may only need to go from the chest to the heart. It should be appreciated that the length may be greater than about 20 cm as well. It should be appreciated that the length of the present invention catheter may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • a subject may be a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g. rat, dog, pig, monkey), etc. It should be appreciated that the subject may be any applicable human patient.
  • FIG. 3 schematically illustrates an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system 5 passively disposed within the pericardial sack 24 (shown with hash marks) of the heart 21 .
  • the epicardial pacing catheter 10 may be used to pace the left ventricle, right ventricle, right atrium, and left atrium. It should be appreciated that the present technology may be used to pace the left ventricle, left atrium, right atrium, right ventricle and/or any combination thereof.
  • the epicardial pacing catheter 10 may first be inserted into the pericardium 22 at the insertion point 33 , which may be located at an anterior portion (towards the sternum) of the pericardium 22 , adjacent to the left ventricle. The catheter is then advanced posteriorly (towards the spine) within the pericardial sack 24 towards the left atrium, right atrium and transverse sinus. The catheter is further advanced around the posterior of the heart, and pushed anteriorly toward the right ventricle. Once the catheter is in contact with the left ventricle, right ventricle, right atrium and left atrium, a deployable stabilization means may be deployed. Both outward facing bumper tabs 31 and inward facing friction tabs 32 are shown, and prevent the catheter from moving or slipping.
  • the inward facing friction tabs 32 may interact with the outside wall of structures such as, but not limited to, the transverse sinus, superior vena cava, right inferior pulmonary vein, and the right superior pulmonary vein to prevent the catheter from dislodging.
  • the outward facing bumper tabs 31 may push on the pericardium to further secure the catheter 10 against the epicardium (for example, as shown in FIG. 2 ).
  • FIGS. 4 (A)-(C) provide schematic illustrations of some of the operational aspects of an exemplary embodiment of the steering means, system or device associated with the epicardial pacing catheter 10 of the epicardial pacing system.
  • the epicardial pacing catheter 10 further comprises a distal steering means (not shown) and a proximal steering means (not shown) which may have the steering characteristics taught by Mahapatra et al. in PCT International Application No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, ā€œEpicardial Ablation Catheter and Method of Use,ā€ hereby incorporated by reference herein in its entirety.
  • the steering means may comprise guidewires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, strands, other extended elements, or any other method known in the art.
  • FIGS. 7(A)-7(B) of '056816 PCT International Application there is provided some details of an exemplary mechanism of action for directional steering of the proximal segment of the device that may be implemented for the present technology.
  • proximal steering means as shown in FIG. 15(B)
  • distal steering means not shown
  • the proximal point of curvature 42 may be located between about 1 cm and about 25 cm from the proximal end and the distal point of curvature 41 may be located between about 1 cm and about 20 cm from the distal end. It should be appreciated that the proximal and distal points of curvature may be located at other longer or shorter points and may be implemented as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • the steering means are used to direct the epicardial pacing catheter 10 through or navigate it within a patient's body. It should be noted that, while two steering means and points of curvature are shown, the epicardial pacing catheter 10 may further comprise a third and fourth steering means for steering the epicardial pacing catheter 10 around a third and fourth point of curvature. Moreover, though a bi-directional distal point of curvature 41 is shown, it should be appreciated that all points of curvature may be uni-directional, bi-direction, tri-direction, quadra-directional, or greater than quadra-directional.
  • FIG. 4(A) shows an embodiment of the epicardial pacing catheter 10 in the non-deflected state.
  • FIG. 4(B) shows the epicardial pacing catheter 10 in a partially-deflected state.
  • FIG. 4(C) shows the epicardial pacing catheter 10 in a fully-deflected state, as would be the case when it has been navigated into the pericardial space of a subject's heart, or other space or structure.
  • the at least one electrode 43 is held against a patient's heart by the stabilization means, shown as the inward facing friction tabs 32 and outward facing bumper tabs 31 .
  • FIGS. 5(A)-5(D) schematically illustrate a number of embodiments of the epicardial pacing catheter 10 of the epicardial pacing system near the distal portion.
  • FIG. 5(A) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV) of a patient's heart.
  • a number of electrodes 43 are adapted to transmit electrical energy to the left ventricle, and are shown facing the left ventricle.
  • the number of electrodes 43 may vary depending on the number of locations required or desired to be paced.
  • the electrodes 43 may be insulated on at least one side away from the heart, as to prevent electrical energy from being transmitted to proximate anatomical structures. The insulation may be about 2 mm thick, and may extend longitudinally through the epicardial pacing catheter 10 .
  • the thickness may be wider or narrower as desired or required according to medical procedures, device/system operations and anatomical considerations.
  • the insulation may comprise Teflon, silicone, polyurethane, and/or any combination thereof or any other non-conductive material known in the art.
  • Outward facing bumper tabs 31 are deployable, and are used to stabilize the epicardial pacing catheter 10 by pushing against the pericardium. As shown, the outward facing bumper tabs 31 are in the non-deployed state as to allow the epicardial pacing catheter 10 to move within the pericardium. Although not shown, the epicardial pacing catheter may further comprise inward facing friction tabs 32 or other stabilization means.
  • the epicardial pacing catheter 10 further comprises a distal tip 51 in communication with the epicardial pacing catheter 10 .
  • the distal tip 51 extends from the body of the catheter 10 and may further insulate the electrodes 43 from proximate anatomical structures and/or be used to push through harder anatomical structures and adhesions as desired or required.
  • FIG. 5(B) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV) and left atrium (LA) of a patient's heart. Additional electrodes 43 near the distal point of curvature 41 are shown. These electrodes 43 may be in communication with the outside wall of the left atrium in order to pace said structure. Additional outward facing bumper tabs 31 are present to press against the pericardium in more distal locations. Inward facing friction tabs 32 are now shown. The inward facing friction tabs 32 may be deployed to catch, drag, stick to, or pull on adjacent anatomical structures to keep the epicardial pacing catheter 10 from moving. FIG. 5(B) shows an example embodiment wherein both the inward facing friction tabs 32 and outward facing bumper tabs 33 are in the non-deployed state to allow movement of the catheter 10 .
  • FIG. 5(C) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV), left atrium (LA), and right atrium (RA). Additional electrodes 43 are located near the distal point of curvature 41 . These electrodes 43 may be in communication with the outside wall of the right atrium in order to pace said structure. Further, additional outward facing bumper tabs 31 are present to press against the pericardium in more distal locations.
  • LV left ventricle
  • LA left atrium
  • RA right atrium
  • FIG. 5(D) shows an example embodiment wherein the epicardial pacing catheter 10 may be used to pace multiple points on the left ventricle (LV), left atrium (LA), right atrium (RA), and right ventricle (RV). Additional electrodes 43 are shown in a more distal location in order to transmit electrical energy to the right ventricle. Further, additional inward facing bumper tabs 32 are present to catch, drag, stick to, or pull on adjacent anatomical structures to keep the epicardial pacing catheter 10 from moving.
  • LV left ventricle
  • LA left atrium
  • RA right atrium
  • RV right ventricle
  • both the number of inward facing friction tabs 32 and outward facing bumper tabs 31 may vary as desired or required to stabilize the epicardial pacing catheter 10 .
  • inward facing friction tabs 32 may be located proximal or distal to any outward facing bumper tab 31 .
  • outward facing bumper tabs 31 may be located proximal or distal to any inward facing friction tab 32 .
  • outward facing bumper tabs 31 and inward facing friction tabs 32 may be positioned at the same location on the epicardial pacing catheter 10 as desired or required.
  • each electrode 43 could be turned on separately in a unipolar or bipolar fashion, allowing for pacing of different chambers and different parts of the same chamber at different times. This has an important advantage: if a region of tissue ever dies in heart attack, pacing can be accomplished from a different location.
  • inward facing friction tabs and outward facing bumper tabs may be alternated with one another, be staggered with one another, or grouped in numbers among each other as desired or required according to medical procedures, device/system operations and anatomical considerations.
  • FIGS. 6(A)-6(F) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system from the most distal end to a more proximal point.
  • FIG. 6(A) schematically illustrates a cross sectional view of an exemplary embodiment of the most distal portion of the epicardial pacing catheter 10 of the epicardial pacing system.
  • the epicardial pacing catheter 10 further comprises a fluid lumen 61 .
  • the fluid lumen occupies internal cross-sectional area of the epicardial pacing catheter 10 .
  • the fluid lumen 61 may extend from an aperture (not shown) in the proximal end of the catheter 10 to a distal fluid aperture 55 . Both the distal fluid aperture 55 and a proximal fluid aperture (not shown) are adapted for the emitting and extracting of a fluid, drug, or agent.
  • the fluid, drug, or agent may be used, but is not necessarily used, to cool the electrodes 43 , regulate heart activity, or distend proximal anatomical structures.
  • the proximal fluid aperture (not shown) is connected to an external fluid, drug, or agent source (not shown).
  • the emitting and extracting of a fluid, drug, or agent may be controlled by an external control handle 150 (as shown, for example, in FIG. 15 ) in communication with the proximal end and fluid, drug, or agent source.
  • the fluid, drug, or agent to flow through the epicardial pacing catheter 10 may be at least one of the following: agent, substance, material, saline solutions, thrombolytic agents, clot lysis agents, chemotherapies, cell slurries, gene therapy vectors, growth factors, contrast agents, angiogenesis factors, radionuclide slurries, anti-infection agents, anti-tumor compounds, receptor-bound agents and/or other types of drugs, therapeutic agent and/or diagnostic agent or any combination thereof.
  • FIG. 6(B) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system located proximal to the distal point of curvature 41 .
  • Both the first distal steering pull-wire 68 and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion of said catheter 10 .
  • the first distal steering pull-wire 68 and second distal steering pull-wire 69 may be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication with the proximal portion of the epicardial pacing catheter 10 .
  • the epicardial pacing catheter 10 may further comprise a stabilization means.
  • the stabilization means may be deployable and may comprise an inward facing friction tab 32 , an outward facing bumper tab 31 , a non-deployable protrusion, a screw, a hook, or other means known in the art.
  • a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31 .
  • the tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope.
  • the tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art.
  • the tab deployment rod 64 may further be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication with the epicardial pacing catheter 10 , said control means used to control the deployment of the stabilization means.
  • the tab deployment rod 64 is in communication with a number of tab deployment arms 65 , wherein each tab deployment arm 65 can be actuated to deploy the inward facing friction tab 32 or outward facing bumper tab 31 .
  • FIG. 6(C) schematically illustrates a more proximal cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system.
  • the anode wire 62 extends longitudinally from the most proximal portion of the epicardial pacing catheter 10 to the most distal anode 63 .
  • the anode wire 62 may be in communication with one or more anodes 63 located throughout the epicardial pacing catheter 10 . Further, the anode wire 62 is adapted for transmitting and receiving electrical energy.
  • the anode wire 62 may be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication with the proximal portion of the epicardial pacing catheter 10 .
  • An outward facing bumper tab 31 is shown in communication with the epicardial pacing catheter 10 .
  • the outward facing bumper tab 31 may be deployed by a tab deployment arm 65 in communication with the tab deployment rod 64 .
  • FIG. 6(D) schematically illustrates a more proximal cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system located proximal to the proximal point of curvature 42 .
  • the epicardial pacing catheter 10 further comprises a second steering means.
  • the second steering means comprises a first proximal steering pull-wire 70 and a second proximal steering pull-wire 71 . Both the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion of said catheter 10 .
  • the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 may be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication the proximal portion of the epicardial pacing catheter 10 .
  • FIG. 6(E) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system.
  • a cathode wire 66 extends longitudinally from the most proximal portion of the epicardial pacing catheter 10 to the most distal cathode 67 .
  • the cathode wire 66 may be in communication with one or more cathodes 67 located throughout the epicardial pacing catheter 10 . Further, the cathode wire 66 is adapted for transmitting and receiving electrical energy.
  • the cathode wire 66 may be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication with the proximal portion of the epicardial pacing catheter 10 .
  • FIG. 6(F) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system.
  • An outward facing bumper tab 31 is shown in communication with the epicardial pacing catheter 10 .
  • the outward facing bumper tab 31 may be deployed by a tab deployment arm 65 in communication with a tab deployment rod 64 .
  • the number of port holes, lumens, wires or rods may vary as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • FIGS. 7(A) and 7(B) schematically illustrate a cross sectional view of an exemplary embodiment of the proximal end 73 of the epicardial pacing catheter 10 of the epicardial pacing system and the most distal end 74 of the control means 150 respectively.
  • twelve electrode wires including six anode wires 62 and six cathode wires 66 , occupy internal cross-sectional area of the epicardial pacing catheter 10 .
  • Each anode wire 62 and cathode wire 66 extends longitudinally through the epicardial pacing catheter 10 towards the distal portion.
  • the cathode wire 66 may be in communication with one or more cathodes 67 located throughout the epicardial pacing catheter 10 .
  • the anode wire 62 may be in communication with one or more anodes 63 located throughout the epicardial pacing catheter 10 .
  • any number of electrodes 43 may be present as desired or required to pace a number of locations on the heart of a patient.
  • a single anode wire 62 may be used to provide electrical energy to a multitude of anodes 63 , or each anode wire 62 can provide electrical energy to a single anode 63 .
  • a single cathode wire 66 may be used to provide electrical energy to a multitude of cathodes 67 , or each cathode wire 66 can provide electrical energy to a single cathode 67 .
  • electrical energy can be transmitted to each electrode 43 separately in a unipolar or bipolar fashion, allowing for pacing of different chambers and different parts of the same chamber at different times.
  • first proximal steering pull-wire 70 , first distal steering pull-wire 68 , second proximal steering pull-wire 71 , and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10 .
  • Each first proximal steering pull-wire 70 , first distal steering pull-wire 68 , second proximal steering pull-wire 71 , and second distal steering pull-wire 69 extends longitudinally through the epicardial pacing catheter 10 towards the distal portion.
  • Each first proximal steering pull-wire 70 , first distal steering pull-wire 68 , second proximal steering pull-wire 71 , and second distal steering pull-wire 69 may comprise guidewires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, strands, other extended elements, or any other method known in the art.
  • first tab deployment rod 64 and second tab deployment rod 72 occupy internal cross-sectional area of the epicardial pacing catheter 10 .
  • Each first tab deployment rod 64 and second tab deployment rod 72 extends longitudinally from the most proximal portion 73 of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31 .
  • the first tab deployment rod 64 and second tab deployment rod 72 may comprise a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, magnetic guidance means, chains, bands, chords, or rope.
  • the first tab deployment rod 64 and second tab deployment rod 72 may comprise a non-conductive material having high tensile strength as is known in the art.
  • the first tab deployment rod 64 and second tab deployment rod 72 may further be controllably connected to the distal end 74 of a control means 150 in communication with the proximal end 73 of the epicardial pacing catheter 10 , said control means used to control the deployment of the tabs.
  • first tab deployment rod 64 and second tab deployment rod 72 are shown, any number of tab deployment rods may be present as desired or required, up to an including the sum of inward facing friction tabs 32 and outward facing bumper tabs 31 (See FIGS. 6 (A)-(E)).
  • a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10 .
  • the biocompatible cover may prevent fibrosis from occurring around the exposed structures of the epicardial pacing catheter 10 .
  • the proximal end 73 of the epicardial pacing catheter 10 may be located just under the skin of a patient.
  • the proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
  • proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10 .
  • the proximal end 73 could act as a male connector in a male-female connection. It should be appreciated that the corresponding male-female connection may be reversed as well.
  • FIG. 7(B) shows a cross sectional view of an example embodiment of the most distal portion 74 of a control handle 150 .
  • the control handle 150 can be controllably connected to the most proximal portion 73 of the epicardial pacing catheter 10 .
  • Wire grippers 75 around each of the internal structures facilitate a secure connection between structures integral the control handle 150 and structures integral the epicardial pacing catheter 10 .
  • all structures within the control handle 150 may end before the distal end 74 .
  • the distal end 74 can act as a female connector in a male-female connection.
  • FIGS. 8 (A)-(C) schematically illustrate cross-sectional views of an example embodiment wherein the epicardial pacing catheter 10 further comprises a stabilization means for stabilizing the epicardial pacing catheter 10 .
  • the stabilization means may comprise at least one deployable member.
  • the stabilization means allows the rotational orientation of the distal portion of the epicardial pacing catheter 10 to remain fixed in place relative to the surface of the heart. If the distal portion of the epicardial pacing catheter 10 were allowed to rotate so that the electrodes 43 faced away from the heart, pacing could not be achieved and adjacent anatomical structures would receive harmful electronic energy.
  • FIGS. 8 (A)-(C) illustrate an exemplary embodiment wherein the stabilization means is an inward facing friction tab 32 .
  • the inward facing friction tab 32 comprises a catheter-side surface 82 and an anatomical-side surface 83 .
  • the anatomical-side surface 83 comprises a lubricious surface that may be navigated through anatomical structures without sticking or catching.
  • the catheter-side surface 82 comprises a rough surface having a larger coefficient of friction than the anatomical-side surface.
  • the catheter-side surface may further comprise a textured surface to increase friction.
  • Both the catheter-side surface 82 and anatomical-side surface 83 comprise a non-conductive material, such as, but not limited to polyurethane, Teflon, silicone, a radio-opaque material, or similarly lubricious material, or other materials known in the art.
  • a non-conductive material such as, but not limited to polyurethane, Teflon, silicone, a radio-opaque material, or similarly lubricious material, or other materials known in the art.
  • FIG. 8(A) illustrates an exemplary embodiment wherein the stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the inward facing friction tab 32 .
  • the stabilizer actuator is illustrated as a tab deployment rod 64 in communication with a tab joint 84 , tab hinge 81 , and tab deployment arm 65
  • the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof.
  • the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand or other means known in the art.
  • the stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • MEMS micro electrical mechanical system
  • a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 .
  • the tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, pole, thread, filament, cord, strand or rope.
  • the tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art.
  • the tab deployment rod may further be controllably connected to a control means or control handle (as shown, for example, in FIG. 15 ) in communication with the epicardial pacing catheter 10 of the epicardial pacing system 5 , and the control means may be used to control the deployment of the tabs.
  • the tab deployment rod 64 is in communication with a tab joint 84 , the tab joint 84 in connection with a tab deployment arm 65 having its endpoint within the inward facing friction tab 32 .
  • the tab deployment arm is in further communication with a tab hinge 81 .
  • the epicardial pacing catheter 10 When the inward facing friction tab 32 is in the non-deployed state, the epicardial pacing catheter 10 may be moved, navigated, or slid within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
  • FIG. 8(B) illustrates an embodiment wherein the stabilization means is an inward facing friction tab 32 in the partially-deployed state.
  • the tab deployment rod 64 When the tab deployment rod 64 is pushed toward the distal end of the epicardial pacing catheter 10 , the tab deployment arm 65 is pulled or tensioned. This causes the inward facing friction tab 32 to separate from the catheter body, exposing the rough catheter-side 82 to proximate anatomical structures.
  • FIG. 8(C) illustrates an embodiment wherein the stabilization means is an inward facing friction tab 32 in the fully-deployed state.
  • outward facing bumper tabs 31 may be deployed using the same means and methods as described above.
  • the stabilization means may comprise one or more protrusions for engaging proximal anatomical structures such as the pericardium and/or the epicardium.
  • the protrusions may be non-deployable.
  • the protrusions may comprise a non-conductive material, such as, but not limited to, silicone, polyurethane, Teflon, a radio-opaque material, or other materials known in the art.
  • hinge devices and joint devices may be a number of elements such as, but not limited thereto, a fulcrum, swivel, gear, elbow, pivot, thrust or the like.
  • tab devices may be a number of elements such as, but not limited thereto, finger, stud, post, tongue, spring, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
  • FIG. 9 schematically illustrates an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system in relation to the heart 21 and further comprising at least one deployable member.
  • the epicardial pacing catheter 10 has been steered around its distal point of curvature 41 , and is positioned in the pericardial space, cavity or sack 24 , or the area between the pericardium 22 and epicardium 23 .
  • the deployable member comprises at least one electrode 43 , and each electrode 43 is facing the heart 21 .
  • the electrodes 43 may be deployed from the epicardial pacing catheter 10 and are fixed to the epicardium 23 when in the fully-deployed state.
  • the epicardial pacing catheter 10 may further comprises an insulating hood 101 in communication with the epicardial pacing catheter 10 .
  • FIG. 10(A) schematically illustrates a top view of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system.
  • the epicardial pacing catheter further comprises a insulating hood 101 extending from beyond the distal point of curvature 41 to a distal tip 51 .
  • the hood may serve as a cushioning and/or alignment means for the distal tip 51 relative to adjacent anatomical structures. It should be appreciated that some portion of the distal tip shall have insulation to protect from adjacent anatomical structures.
  • the shape of the distal tip and hood may vary according to medical procedures, device/system operations and anatomical considerations.
  • FIG. 10(B) schematically illustrates a bottom view of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system.
  • An anode 63 and cathode 67 are shown in communication with the epicardial pacing catheter 10 .
  • the contact zones containing the anode 63 and cathode 67 electrodes are about 2 mm in length and about 1 mm in width, and are located centrally within the underside surface of the insulating hood 101 . It should be appreciated that the width of the electrodes may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • the insulating hood extends from a distal location beyond the distal point of curvature 41 to a distal tip 51 .
  • FIG. 10(C) schematically illustrates an axial view of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system looking at the distal tip 51 of the insulating hood 101 .
  • a single electrode 43 can be seen on the underside of the epicardial pacing catheter 10 .
  • FIG. 10(D) schematically illustrates a side view of an exemplary embodiment of the epicardial pacing catheter 10 comprising an insulating hood 101 , distal tip 51 , and two electrodes 43 .
  • the insulating hood 101 extends over the side of the epicardial pacing catheter 10 .
  • each electrode 43 could be powered separately in a unipolar or bipolar fashion, allowing for pacing of different parts of the same chamber at different times.
  • FIG. 11(A)-11(E) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system from a point located proximal to the most distal anode 62 or cathode 67 and distal to the distal point of curvature 41 to a point located at the most proximal point 73 of the epicardial pacing catheter 10 .
  • FIG. 11(F) schematically illustrates a cross sectional view of an exemplary embodiment of the external control handle 150 at the most distal point 74 .
  • FIG. 11(A) schematically illustrates a cross section of an example embodiment of the epicardial pacing catheter 10 located more distal than the distal point of curvature 41 and proximal to the most distal anode 62 or cathode 67 .
  • An anode wire 62 , cathode wire 66 , electrode pull-wire 112 , and second-electrode pull-wire 113 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion 73 of said catheter 10 .
  • the anode wire 62 , cathode wire 66 , electrode pull-wire 112 , and second-electrode pull-wire 113 may comprise longitudinal structures, such as, but not limited to, push-rods, pull-rods, wires, strings, or ropes. Further, the anode wire 62 , cathode wire 66 , electrode pull-wire 112 , and second-electrode pull-wire 113 may be controllably connected to a control handle 150 in electrical communication with the most proximal point 73 of the epicardial pacing catheter 10 .
  • the anode wire 62 and electrode pull-wire 112 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal anode 63 .
  • the cathode wire 66 and second electrode pull-wire 113 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal cathode 67 .
  • FIG. 11(B) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the distal point of curvature 41 .
  • the epicardial pacing catheter 10 further comprises a first distal steering pull-wire 68 and a second distal steering pull-wire 69 fixed to distal steering anchors 110 in communication with the epicardial pacing catheter 10 .
  • the distal steering anchors 110 comprise a material with requisite strength to hold the first distal steering pull-wire 68 and second distal steering pull-wire 69 in place.
  • the first distal steering pull-wire 68 and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal point 73 of said catheter 10 .
  • the first proximal steering pull-wire 68 and second proximal steering pull-wire 69 may be controllably connected to a control handle 150 in communication with the most proximal point 73 of the epicardial pacing catheter 10 .
  • FIG. 11(C) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located between the distal point of curvature 41 and proximal point of curvature 42 .
  • FIG. 11(D) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the proximal point of curvature 42 .
  • the epicardial pacing catheter 10 further comprises a proximal steering pull-wire 70 fixed to a proximal steering anchor 111 in communication with the epicardial pacing catheter 10 .
  • the proximal steering anchor 111 comprises a material with requisite strength to hold the proximal steering pull-wire 70 .
  • the proximal steering pull-wire 70 occupies internal cross-sectional area of the epicardial pacing catheter 10 and extends longitudinally to the most proximal point 73 of said catheter 10 .
  • the proximal steering pull-wire 70 can be controllably connected to a control handle 150 or control means in communication with the most proximal point 73 of the epicardial pacing catheter 10 .
  • FIG. 11(E) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the most proximal point 73 .
  • anode wire 62 electrode pull-wire 112 , cathode wire 66 , and second electrode pull-wire 113 are shown, any number of anode wires 62 , electrode pull-wires 112 , cathode wires 66 , and second electrode pull-wires 113 may be present as desired or required, up to and including, for example, the total number of electrodes 43 (or the sum of the anodes 63 and cathodes 67 ).
  • a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10 .
  • the biocompatible cover can prevent fibrosis from occurring around the exposed wires of the epicardial pacing catheter 10 .
  • the proximal end 73 of the epicardial pacing catheter 10 is located just under the skin of a patient (or location(s) as desired or required).
  • the proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
  • all structures beginning at the proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10 .
  • the proximal end 73 could act as a male connector in a male-female connection.
  • the male-female arrangement may be reversed if desired or required.
  • FIG. 11(F) schematically illustrates a cross sectional view of an example embodiment of the most distal portion 74 of a control handle 150 .
  • the control handle 150 can be controllably connected to the most proximal portion 73 of the epicardial pacing catheter 10 .
  • Wire grippers 75 (or other retention means or devices) around each of the internal structures facilitate a secure connection between structures integral the control handle 150 and structures integral the epicardial pacing catheter 10 .
  • control handle or control means may end before the distal end 74 .
  • distal end 74 can act as a female connector in a male-female connection (or female-male connection).
  • FIG. 12(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system comprising a deployable stabilization means in an un-deployed state.
  • the deployable stabilization means comprises an anode 63 and cathode 67 in communication with a hook 124 .
  • the hook 124 , anode 63 , and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver or iridium, and/or alloys thereof.
  • the stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124 .
  • the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a joint 121 , and hinge 122 , the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof.
  • the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand or other means known in the art.
  • the stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • MEMS micro electrical mechanical system
  • hook devices may be a number of elements such as, but not limited thereto, pin, claw, latch, finger, stud, spring, post, tongue, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
  • an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43 , which may comprise an anode 63 or cathode 67 .
  • the electrode pull-wire 112 is in communication with a joint 121 , the joint 121 in further communication with a hinge 122 .
  • the electrode pull-wire 112 may comprise a conductive material having high tensile strength as is known in the art.
  • the electrode-pull wire 112 may further be controllably connected to a control means (for example, as shown in FIG. 15 ) in communication with the epicardial pacing catheter 10 and epicardial pacing system.
  • the control means may be used to control the deployment of the anode 63 and cathode 67 in communication with hooks 124 , and any of the devices, systems, subsystems, elements, and devices discussed throughout this disclosure.
  • the epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter.
  • the epicardial pacing catheter 10 further comprises a number of bumpers 120 in communication with the bottom of the epicardial pacing catheter 10 .
  • the bumpers enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to be in communication with the epicardium.
  • the epicardial pacing catheter 10 When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
  • FIG. 12(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising a deployable anode 63 and cathode 67 in a fully-deployed state.
  • the electrode pull-wire 112 is pushed toward the distal end of the epicardial pacing catheter 10 , the anode 63 and cathode 67 are splayed outward to a 90 degree angle, or an angel(s) as desired or required. This causes the anode 63 and cathode 67 to separate from the catheter body, allowing the hooks 124 to engage proximate anatomical structures, such as the epicardial wall.
  • the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart. If the distal portion of the epicardial pacing catheter 10 were allowed to rotate so that the electrodes 43 faced away from the heart, pacing could not be achieved and adjacent anatomical structures would receive harmful electronic energy.
  • any number of deployable electrodes 43 may be present as desired or required to pace any number of locations on the heart of a patient.
  • FIG. 13(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system comprising a deployable stabilization means in an un-deployed state.
  • the deployable stabilization means comprises a number of screws 130 in communication with an anode 63 and cathode 67 .
  • the screws 130 , anode 63 , and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver and/or iridium, and/or alloys thereof.
  • the stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the screws 130 in communication with the anode 63 and cathode 67 .
  • the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a gear 131
  • the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof.
  • the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand, or other means known in the art.
  • the stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • MEMS micro electrical mechanical system
  • screw devices may comprise a number of elements such as, but not limited thereto, any translatable protrusion or extension for instance.
  • Some non-limiting examples may include: toggle, press, slide, spring, stud, post, tongue, projection, pedestal, protuberance, contact, or the like.
  • an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43 , which may be an anode 63 or cathode 67 .
  • the electrode pull-wire 112 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope.
  • the electrode pull-wire 112 may be made of a conductive material having high tensile strength as is known in the art.
  • the electrode-pull wire 112 may further be controllably connected to a control means (as shown, for example, in FIG. 15 ) in communication with the epicardial pacing catheter 10 and epicardial pacing system.
  • the control means may be used to control the deployment of the screws 130 in communication with the anode 63 and cathode 67 .
  • the epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter.
  • the epicardial pacing catheter 10 When the screws 130 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
  • FIG. 13(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising fully-deployed screws 130 in communication with the anode 63 and cathode 67 .
  • the gears 131 are activated and the screws 130 are rotationally-actuated. This causes the screws 130 to engage proximate anatomical structures, such as the epicardial wall.
  • the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart.
  • the electrical energy is transmitted from the anode 63 and cathode 67 through the screws 130 and into the heart.
  • any number of deployable screws 130 may be present as desired or required to pace any number of locations on the heart of a patient.
  • FIG. 14(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 epicardial pacing system comprising a deployable stabilization means in an un-deployed state.
  • the deployable stabilization means comprises an anode 63 and cathode 67 in communication with a hook 124 .
  • the hooks 124 , anode 63 , and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver and/or iridium, or alloys thereof.
  • the deployable stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124 .
  • the stabilizer actuator is illustrated as an electrode pull-wire 112 and second electrode pull-wire 113 in communication with a number of joints 121 , and hinges 122
  • the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof.
  • the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, thread, filament, cord, strand, rope, pole, or other means known in the art.
  • the stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • MEMS micro electrical mechanical system
  • an electrode pull-wire 112 and second electrode pull-wire 113 extend longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal anode 63 and cathode 67 respectively.
  • the electrode pull-wire and second electrode pull-wire 113 are in communication with a number of joints 121 , the joints 121 in further communication with a number of hinges 122 .
  • the electrode pull-wire 112 and second electrode pull-wire 113 may comprise longitudinal structures, such as, but not limited to, push-rods, pull-rods, wires, thread, filament, cord, strand, strings, or ropes.
  • the electrode pull-wire 112 and second electrode pull-wire 113 may be made of a conductive material having high tensile strength as is known in the art.
  • the electrode-pull wire 112 and second electrode pull-wire 113 may further be controllably connected to a control means (for example, as shown in FIG. 15 ) in communication with the epicardial pacing catheter 10 and epicardial pacing system.
  • the control means may used to control the deployment of the anode 63 and cathode 67 in communication with hooks 124 .
  • the epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter.
  • the epicardial pacing catheter 10 may further comprise a number of bumpers 120 in communication with the epicardial pacing catheter 10 .
  • the bumpers 120 enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to communicate with the heart.
  • the epicardial pacing catheter 10 When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
  • FIG. 14(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising a deployable anode 63 and cathode 67 in a fully-deployed state.
  • the electrode pull-wire 112 and second electrode pull-wire 113 are pulled toward the proximal end of the epicardial pacing catheter 10 , the anode 63 and cathode 67 are splayed outward to a 90 degree angle. This causes the anode 63 and cathode 67 to separate from the catheter body, allowing the hooks 124 to engage proximate anatomical structures, such as the epicardial wall.
  • the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart.
  • the electrical energy is transmitted from the anode 63 and cathode 67 through the hooks 124 and into the heart.
  • any number of deployable anodes 63 and cathodes 67 may be present as desired or required to pace any number of locations on the heart of a patient.
  • FIG. 15(A) schematically illustrates an example embodiment of an external control handle 150 (that may be associated with, although not shown, the epicardial pacing catheter of the system).
  • the epicardial pacing catheter and system further comprises a control means, wherein said control means is an external control handle 150 .
  • the external control handle 150 may be in communication with the most proximal point 73 of the epicardial pacing catheter 10 .
  • the external control handle 150 may have integral to it the distal steering control means 154 , the proximal control means 154 , the irrigation control means (not shown) and the control means for the stabilization means 151 .
  • the stabilization control means 154 may be used to regulate the degree of extension of said stabilization means via a pull-wire or pushrod arrangement or some other suitable tensioning or actuating means know in the art.
  • the external control handle 150 may further comprise a pull-rod control aperture 152 , wherein a tab deployment rod 64 and second tab deployment rod (not shown) may be inserted.
  • the external control handle 150 is preferably sized to be grasped, held and operated by a user. It should be appreciated that other control and operating interface members, devices, or means may be utilized for the handle. Attached to the proximal end of the control handle 150 is the handle proximal port (not shown) from which anode wires 62 and cathode wires 67 extend in order to make electrical connections to diagnostic or electrical devices (not shown). Electrical wires (for example, shown in FIGS. 6 , 7 , and 11 ) may extend through the proximal portion to each of the electrodes 43 of the epicardial pacing catheter 10 .
  • FIG. 15(B) schematically illustrates an example embodiment of the proximal steering control means 153 integral to the control handle 150 .
  • the proximal steering control means 153 is controllably connected to the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 .
  • FIG. 15(C) schematically illustrates an example embodiment wherein the proximal steering control means 153 integral to the control handle 150 has been activated.
  • the proximal steering control means 153 is activated by a user, the first proximal steering pull-wire 70 becomes taught, and the second proximal steering pull-wire 71 loosens, creating slack 155 .
  • Both the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 extend longitudinally through the control handle 150 , into the epicardial pacing catheter 10 , and are anchored at the proximal point of curvature 42 .
  • the epicardial pacing catheter bends toward the proximal steering anchor and around the proximal point of curvature 42 .
  • control handle may have channels for the steering pull wires and thumb wheel knobs for tightening or loosening the pull wires.
  • catheter device and epicardial system and their related components discussed herein may can take on all shapes along the entire continual geometric spectrum of manipulation of x, y and z planes to provide and meet the anatomical and structural demands and requirements.
  • Step 1 Access and place a guidewire in the pericardial space using our EpiNeedle Access system.
  • Step 2 Use a sheath, preferably our EpiSheath, or a general long 8 Fr sheath to place over the guidewire and maintain access.
  • Step 3 Place the lead of the subject invention with handle though the sheath.
  • Step 4 Guide the lead in the epicardial space using the two steering points and the sheath under fluoroscopic guidance (although this lead may be guided via one or more other imaging methods to include ICE, CT, MRI, Visual Endoscopy, or Echo Methods).
  • the lead should be advanced along the border of the heart apically to base along the LV. Once it crosses the AV groove to the LA it should be deflected downward and advanced through the transverse sinus. Once across the transverse sinus it will need to be deflected up to the SVC and then down to the RA and finally the RV.
  • Step 5 Segment the sheath back to the inferior portion of the RV.
  • Step 6 the handle should be hooked up to an EP analyzer.
  • the lead should be clocked for a more anterior position or counter-clocked for a more posterior position until the largest LV signals are found. If multi-chamber pacing is sought one should pick a point when at least two poles of the LV, and of each other chamber, has an amplitude of at least 1 mV in the atrium and 5 mV in the ventricle. Note there is no need for all points to have high amplitudes.
  • the tabs should be deployed. This should push the lead more tightly against the heart and actually increase the voltage. Then, pacing should be attempted in the LV. If threshold is less than 2.5 V it is a good site on any pole. The same should then be done with the other points. If no point is good the tab should be let down and then the lead repositioned.
  • Step 7 Once a good position is found the handle should be removed and the sheath withdrawn completely outside of the patient.
  • Step 8 The lead should be plugged into either a custom ICD/BiV or attached to our wire interface for a standard ICD.
  • the poles that are not used to pace should be plugged in this case.
  • all poles would be active and the user (or an automated system) may decide when to pace.
  • Step 9 The lead extender to the ICD would then either be tunneled back to the ICD in the shoulder (or elsewhere), placed by the nearby abdominal ICD. Or a battery-powered wireless box will be used to communicate with the main ICD in the shoulder. At this point the patient should be recovered. No stitch is needed for the lead access.
  • any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particularly interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein.

Abstract

The epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.

Description

    RELATED APPLICATIONS
  • The present invention claims priority from U.S. Provisional Application Ser. No. 60/986,786, filed November, 09, 2007, entitled ā€œPassive Fixation, Steerable Epicardial Lead to be Placed via the Subxiphoid Process for Pacing Left Ventricle, Right Ventricle, Right Atrium and Left Atrium and Cardiac Defibrillation,ā€ and U.S. Provisional Application Ser. No. 61/023,727, filed Jan. 25, 2008, entitled ā€œSteerable Epicardial Lead to be Placed via the Subxiphoid Process for Left Ventricular Pacing and Related Method;ā€ the disclosures of which are hereby incorporated by reference herein in their entirety.
  • This application is related to PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, ā€œAccess Needle Pressure Sensor Device and Method of Use,ā€ the disclosure of which is hereby incorporated by reference herein in its entirety.
  • This application is related to PCT International Application No. Serial No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, ā€œEpicardial Ablation Catheter and Method of Use,ā€ the disclosure of which is hereby incorporated by reference herein in its entirety.
  • This application is related to PCT International Application No. Serial No. PCT/US2008/057626, filed Mar. 20, 2008, entitled, ā€œElectrode Catheter for Ablation Purposes and Related Method Thereof,ā€ the disclosure of which is hereby incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The present technology relates generally to the field of medical devices to be used for cardiological procedures. More specifically, the technology is in the subfield of catheterization devices to be used for epicardial pacing.
  • BACKGROUND OF THE INVENTION
  • Congestive heart failure effects between 4 and 5 million people in the United States and accounts for about $15 billion per year in hospitalization costs alone. While medical therapy, such as prescription drugs, may benefit a number of patients, side effects prevent some patients from completing therapy. Moreover, few patients are completely cured of their symptoms.
  • In recent years simultaneous pacing of both ventricles (via a biventricular pacemaker) has been shown in multiple studies to improve the quality of life and extend survival of such patients. The American College of Cardiology and American Heart Association has, therefore, recommended that all patients having class II, III or IV heart failure with a wide QRS complex (electrocardiograph deflections of the Q, R and S waves) receive a biventricular pacemaker. This recommendation alone encompasses up to one million people per year in the US, and uses for this type of device are expanding.
  • Unfortunately, due to inherent difficulties in placing left ventricular (LV) leads, less than 15% of eligible patients are able to receive this device. Unlike the RV, the electrical lead can not be placed directly into the LV due to the unacceptably high risk of stroke. The lead must, therefore, be placed on the surface of the LV. In order to accomplish this placement, a lead is threaded through the right atrium (RA) using a venous system, and passed through the coronary sinus (CS) to any of a number of small veins in communication with the surface of the LV.
  • Quantitative clinical results, especially those reporting the statistics of negative outcomes, are seldom published. However, in procedures conducted at the inventors' high volume university hospital, 20% of patients have been found to have a very difficult access to the CS, resulting in an abandonment of the procedure. In an additional 20% of patients, a vein in communication with an optimal location on the LV can not be found within the CS. As an example, if one is trying to place a lead on the lateral aspect of the LV (an ideal location), but there is no vein extending from within the CS to the lateral aspect of the LV, a lead can not be placed here. Worse still, many of these patients have multiple areas of dead heart tissue, so even if a lead can be placed within a vein, it might not pace the heart. Even moving the lead slightly would help, but the vein acts like a railroad track to limit placement. All of these limitations result in an unpredictable procedure time, making it difficult for hospitals and doctors to plan the operation.
  • At present, the most effective option to pace the LV is through invasive surgery requiring cardiac surgeons. The newest techniques allow surgeons to either open a patient's chest or cut between the ribs to place the lead anywhere on the LV. Even the most ā€œminimally invasiveā€ leads currently available require a lateral thoracotomy necessitating a surgeon. Both the NcontactĀ® and HeartlanderĀ® tools, which are not designed to pace, require surgical incisions.
  • There are two significant barriers to widespread application of these surgical techniques. First, surgical procedures are generally more invasive and require longer recovery times. Second, most cardiologists consider it the standard of care to attempt an initial placement of a lead via CS access; only after that fails is surgery considered. To avoid the need for additional surgical intervention, a cardiologist may choose a sub-optimal location for lead placement. This is typically in keeping with the wishes of most patients; minimally invasive techniques are preferred whenever possible.
  • There is therefore a need in the art whereby one would be able to place a lead for pacing on any optimal site of the LV based solely on what is clinically efficient for the patient and not the heart's anatomy. Moreover, if this could be accomplished by a cardiologist (non-surgeon) without the need for invasive surgery, the procedure would be used more often. Thus, instead of only 15% of patients receiving biventricular pacing, close to 100% of patients could receive it.
  • The following U.S. patent documents discuss catheterization tools for cardiology: U.S. Pat. Nos. 7,142,919 to Hine et al.; 7,130,699 to Huff et al.; 7,120,504 to Osypka; 7,101,362 to Vinney; 7,090,637 to Danitz et al.; 7,089,063 to Lesh et al.; 7,059,878 to Hendrixson et al.; 7,041,099 to Thomas et al.; 7,027,876 to Casavant et al.; 7,008,418 to Hall et al.; 6,973,352 to Tsutsui et al.; 6,936,040 to Kramm et al.; 6,921,295 to Sommer et al.; 6,876,885 to Swoyer et al.; 6,868,291 to Bonner et al., all of which are incorporated by reference herein in their entirety. No reference discloses the conceptual arrangements for an integrated cardiological device for epicardial pacing.
  • To overcome these limitations, we have conceived the subject device and method of use, as described in the Summary of the Invention and Detailed Description of the Drawings below.
  • These and other objects, along with advantages and features of the invention disclosed herein, will be made more apparent from the description, drawings and claims that follow.
  • SUMMARY OF THE INVENTION
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention includes an apparatus and means for treating congestive heart failure and arrhythmias (both bradycardias and tachycardias) of the heart. For example, the invention provides for a novel means and method of placing an epicardial lead within a patient for the purpose of permanent multi-site, cardiac pacing and defibrillation, including left ventricular pacing.
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention includes a lead that paces LV, RV, LA and RA at the same time or in sequence. It could even pace two separate points on the same chamber (the LV or the RV) at the same time or at some offset. This has an important advantage, for example, if a region of tissue ever dies in heart attack, the present invention method can still pace from elsewhere.
  • An aspect of an embodiment (or partial embodiment thereof) of the present invention may include placing a bipolar pacing lead through a subxiphoid incision and then channeling it back to a pacemaker. The procedure may evolve through three distinct stages. In the earliest stage, one would place the lead on the left ventricle and tunnel it underneath the pectoral muscle back to the chest wall where the pacemaker would normally be placed. In the second, one would place the lead back to the subxiphoid process, attach it to a battery that is positioned just on the outside of the xiphoid process and have it wirelessly communicate with the main pacemaker. Lastly one would place a button-like object right on the top of the left ventricle and then communicate wirelessly back to the main pacemaker. Still yet, another embodiment of the means and method of the invention may include having the battery, anode and cathode means all compounded on the end of the lead so that there would not be any need to have another excision to bring any of the components back out of the heart.
  • An aspect of an embodiment or partial embodiment of the present invention (or combinations of various embodiments in whole or in part of the present invention) comprises an epicardial pacing system. The system may comprise: an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter comprising: a proximal portion, distal portion, and a longitudinal structure there between; and at least one electrode in communication with the distal portion, wherein the at least one electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
  • An aspect of an embodiment or partial embodiment of the present invention (or combinations of various embodiments in whole or in part of the present invention) comprises a method for use with an epicardial pacing catheter. The method may comprise: disposing the epicardial pacing catheter in the middle mediastinum of the thorax of a subject; and pacing the heart at one or more locations with electrical energy from an at least one electrode; and at least partially insulating the electrical energy to allow pacing of the heart without damage to adjacent anatomical structures.
  • The epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing (and/or other diagnostic or therapeutic procedure) of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
  • These and other objects, along with advantages and features of the invention disclosed herein, will be made more apparent from the description, drawings and claims that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated into and form a part of the instant specification, illustrate several aspects and embodiments of the present invention and, together with the description herein, serve to explain the principles of the invention. The drawings are provided only for the purpose of illustrating select embodiments of the invention and are not to be construed as limiting the invention.
  • FIG. 1 schematically illustrates the overall configuration of the epicardial pacing catheter system.
  • FIG. 2 schematically illustrates the pericardium and heart alone (FIG. 2(A)) and an example embodiment in position relative to the heart (FIG. 2(B)).
  • FIG. 3 schematically illustrates an example embodiment passively disposed within the pericardial sack of the heart.
  • FIGS. 4(A)-(C) schematically illustrate a number of exemplary embodiments of the steering means employed to position the distal portion of an exemplary embodiment of the epicardial pacing catheter in un-tensioned, partial steering, and full steering modes, respectively.
  • FIGS. 5(A)-5(D) schematically illustrate a number of exemplary embodiments of the epicardial pacing catheter 10 near the distal portion.
  • FIGS. 6(A)-6(F) schematically illustrate cross sectional views of an exemplary embodiment of the technology from the most distal end to a more proximal point.
  • FIGS. 7(A) and (B) schematically illustrate cross sectional views of an exemplary embodiment of the most proximal portion of an exemplary embodiment of the epicardial pacing catheter and the most distal portion of an exemplary embodiment of the control means, respectively.
  • FIGS. 8(A)-(C) schematically illustrate cross-sectional views of an example embodiment further comprising a stabilization means for stabilizing the example embodiment. The stabilization means illustrated in an un-deployed position, partially deployed position, and deployed position, respectively.
  • FIG. 9 schematically illustrates an example embodiment of the epicardial pacing catheter further comprising deployable electrodes fixed or adjacent to the heart.
  • FIG. 10(A) schematically illustrates a top view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 10(B) schematically illustrates a bottom view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 10(C) schematically illustrates an axial view of an exemplary embodiment of the epicardial pacing catheter looking at the distal tip of the insulating hood.
  • FIG. 10(D) schematically illustrates a perspective view of an exemplary embodiment of the epicardial pacing catheter.
  • FIG. 11(A)-11(E) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter from a point located proximal to the at least one electrode and distal to the distal point of curvature to a point located at the most proximal point of the epicardial pacing catheter. FIG. 11(F) schematically illustrates a cross sectional view of an exemplary embodiment of the control handle at the most distal point.
  • FIG. 12(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in an un-deployed state.
  • FIG. 12(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in a fully-deployed state.
  • FIG. 13(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable screw or the like in an un-deployed state.
  • FIG. 13(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable screw or the like in a fully-deployed state.
  • FIG. 14(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in an un-deployed state.
  • FIG. 14(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter comprising a deployable anode and cathode in a fully-deployed state.
  • FIG. 15(A) schematically illustrates an example embodiment of an external control handle.
  • FIG. 15(B) schematically illustrates an example embodiment of the proximal steering control means or a least part of the steering control means integral to the control handle.
  • FIG. 15(C) schematically illustrates an example embodiment wherein the proximal steering control means or a least part of the steering control means integral to the control handle has been activated.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The following detailed description is of the best presently contemplated modes of carrying out the invention. This description to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention.
  • FIG. 1 schematically illustrates an overview of an exemplary embodiment of the epicardial pacing system 5 comprising an epicardial pacing catheter 10 in communication with at least one electrode 43, a control means or control handle 150, an interface member 162, a processor 164 or computer, power supply 166 or battery, or voice control instrumentation/system 168.
  • The control means 150 may be in communication with the proximal portion of the catheter 10, wherein the control means 150 is controllably connected to at least one electrode 43. In one embodiment, the control means may be a control handle or controller as desired or required. In another embodiment, the control handle (or control means) may be removable. The epicardial pacing catheter 10 may further comprises a processor 164 or computer. The processor 164 may be in communication with said epicardial pacing catheter 10 and system. The processor 164 may be located at or near the patient's shoulder, for example. The epicardial pacing catheter 10 further comprises an interface member 162 in communication with said epicardial pacing catheter 10. The interface member 162 may be in remote and/or local communication with the processor 164, pacing system 5, catheter 10, controller 150, power supply 166, and/or voice control instrumentation to provide information to and/or from a patient, physician, technician, or a clinician. Further, any of the components and systems illustrated in FIG. 1 may be in communication with each other, as well as other systems, computers, devices, printers, displays, PDAs, networks, memory storage, and voice control instrumentations as desired or required.
  • As discussed, the epicardial pacing system 5 may comprise a power supply 166. The power supply 166 may comprise a small battery located at the subxiphoid area, preferably of a silicone silver-gallium kind designed specifically for use in implantable cardiac defibrillators (ICDs). The power characteristics of the particular battery may be such that it can maintain the same voltage for a long period of time before falling off suddenly.
  • The epicardial pacing system 5 and epicardial pacing catheter 10 may further comprise a wireless communication system, wherein the processor 164, power supply 166, voice control instrumentation 168, interface member 162 or desired components of the system 5 may be wirelessly connected to one another. In another embodiment, the battery and processor 164 are both located in the subxiphoid area.
  • It should be appreciated that any of the components or modules referred to with regards to any of the present technology embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented. Moreover, the various components may be communicated locally and/or remotely with any user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardwares.
  • Next, as will be illustrated in Figures that follow, the epicardial pacing catheter 10 in accordance with the present technology may comprise a proximal portion, a distal portion, and a longitudinal structure there between. It should be appreciated that the distal portion may be considered at the distal end tip of the epicardial pacing catheter 10; or a portion or segment at or in the vicinity of the distal end tip of the epicardial pacing catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the distal end of the catheter 10 as desired or required. The length and location of the distal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
  • It should also be appreciated that the proximal portion may be considered the tip of the beginning of the catheter 10; or a portion or segment at or in the vicinity of the proximal end of the catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the proximal end of the catheter 10 as desired or required. The length and location of the proximal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
  • The proximal portion, distal portion and longitudinal structure there between may be integrally formed from a biocompatible material having requisite strength and flexibility for deployment within a patient. The proximal portion, distal portion, and longitudinal structure there between may have a lubricious outer surface comprising a material having a low coefficient of friction, such as, but not limited to, silicone, polyurethane, or Teflon, or combination thereof. The proximal portion, distal portion, and longitudinal structure there between may further have an outer surface comprising a drug eluting surface and/or a surface impregnated with sirilimus to prevent the production of fibrosis within a patient. The longitudinal structure may be between about 15 cm and about 100 cm in length, and between about 2 mm and about 6 mm in diameter. It should be appreciated that the length of the longitudinal structure may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations. The cross section of the longitudinal structure comprises an oval, circle, ellipse, polygon, or semi-circular shape. The longitudinal structure may be any one of: lumen, conduit, channel, passage, pip, tunnel or bounded tubular surface.
  • The epicardial pacing catheter 10 further comprises at least one electrode 43 in communication with the distal portion, wherein the at least one electrode 43 is insulated on at least one side to allow pacing of the heart without damage to adjacent structures.
  • The at least one electrode 43 may be constructed of platinum, gold, silver, iridium, or any alloy thereof, or other conducting materials known in the art. The at least one electrode 43 may comprise a roughened, profiled, or otherwise prepared surface to increase the total surface area for energy transmission. The at least one electrode 43 may be semi-cylindrical or arc-like in shape, and may be contoured to be compatible with proximate anatomical structures. The at least one electrode 43 may be between about 0.3 mm and about 4 mm in length, and may be spaced between about 1 mm and about 25 mm from each other. Further, the at least one electrode 43 may be a pair of electrodes, commonly referred to as an anode and cathode in the art. Finally, the at least one electrode 43 may be deployable. It should be appreciated that the length of the electrodes may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • It should be appreciated that the various sheaths, catheters and guidewires, or any related components disclosed herein, may have a circular or oval-shaped cross-section or various combinations thereof. Further, it should be appreciated that various sheaths, catheters and guidewires, or any related components disclosed herein may have any variety of cross sections as desired or required for the medical procedure or anatomy.
  • Moreover, it should be appreciated that any of the components or modules referred to with regards to any of the present invention embodiments discussed herein, may be a variety of materials and/or composites as necessary or required. Still further, it should be appreciated that any of the components or modules (or combination thereof) may provide shape, size and volume contoured by adjusting its geometry and flexibility/rigidity according to the target location or anatomy (or region, including structure and morphology of any location) being treated.
  • FIG. 2(A) schematically illustrates the pericardium and heart alone. The pericardium 22 is shown in close proximity to the epicardium 23.
  • FIG. 2(B) schematically illustrates three contiguous sections of an example embodiment implanted around the heart 21. The epicardial pacing catheter 10 of the epicardial pacing system 5 is positioned in the pericardial space, cavity or sack 24, or the area between the pericardium 22 and epicardium 23. All of the electrodes 43 are facing the heart 21. The epicardial pacing catheter 10 further comprises outward facing bumper tabs 31 and inward facing friction tabs 32 to stabilize the epicardial pacing catheter 10 from moving within the pericardial sack 24, once it is implanted.
  • Although not shown, an aspect of an embodiment of the present technology may be implemented with an access needle (introducer needle), conduit or the like. The access needle or conduit is adapted to be inserted into the epicardial region or other body part or body space so as to provide an access or guideway for the epicardial pacing catheter 10. An example of an access system is disclosed in PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, ā€œAccess Needle Pressure Sensor Device and Method of Use,ā€ of which is hereby incorporated by reference herein in its entirety. See for example, but not limited thereto, FIGS. 2 and 5 of the '056643 PCT Application. The access needle sensor device or the like serves as a guideway for introducing other devices into the pericardium 22, for instance, sheath catheters that might subsequently be employed for procedures within the pericardium 22 or other applicable regions, space or anatomy. Other devices that the access device may accommodate with the practice of this invention include, but are not limited thereto, the following: ablation catheters, guide wires, other catheters, visualization and recording devices, drugs, and drug delivery devices, lumens, steering devices or systems, drug or cell delivery catheters, fiber endoscopes, suctioning devices, irrigation devices, electrode catheters, needles, optical fiber sensors, sources of illumination, vital signs sensors, and the like. These devices may be deployed for procedures in an integral body part or space.
  • It should be appreciated that any data, feedback, readings, or communication from the system (for example, catheters, access needles, sensors, systems, etc.) may be received by the user, clinician, physician, or technician or the like by visual graphics, audible signals (such as voice or tones, for example) or any combination thereof. Additionally, the data, feedback, or communication may be reduced to hard copy (e.g., paper) or computer storage medium. It should be appreciated that the pressure related readings and data may be transmitted not only locally, but remotely as well.
  • Moreover, an aspect of the invention may be in the field of voice control over medical systems and devices of use in specialized electrophysiology procedures that employ subxiphoid access for the purpose of navigating an interventional or surgical probe onto the epicardial surface of the heart, via pericardial transit. In its most particular form, the invention may be in the specialized category of voice control over instruments and systems that measure the intrathoracic and intrapericardial pressures during the process of navigating said intrathoracic or surgical probe within the patient following subxiphoid insertion.
  • An aspect of an embodiment or partial embodiment of the subject invention (or combinations of various embodiments in whole or in part of the present invention) is one of providing the working electrophysiologist with a means and method for controlling the operational parameters (e.g., the display functions) of diagnostic and therapeutic cardiological equipment by voice, thus eliminating either the need to temporarily take their hands off the patient or the need to have an additional EP Lab technician available to perform such tasks. (Such personnel are often needed to insure that the clinician need never touch anything outside the sterile field.). Generally, examples of voice control instrumentation that teach applications in medical applications but not in electrophysiological approaches to cardiological problems include U.S. Pat. Nos. 7,286,992; 7,259,906; 7,247,139; 6,968,223; 6,278,975; 5,970,457; 5,812,978; 5,544,654 and 5,335,313, all of which are hereby incorporated by reference in their entirety.
  • Additionally, present invention system and method may further comprise imaging said the access needle and the epicardial pacing system (and components thereof) with at least one of magnetic resonance imaging, computed tomography, fluoroscopy, or other radiological modalities. In some embodiments, readings are provided from said sensing of pressure for navigating said needle access and the epicardial pacing system (and components thereof).
  • Although not shown, as mentioned above, the deploying of the epicardial pacing catheter 10 into the pericardial sack 24 may be minimally invasive, non-surgical, and/or interventional. The deploying of the epicardial pacing catheter 10 may be performed by a non-surgeon and/or cardiologist through use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted through the chest and into the pericardium 22, with the guidewire then put in place. The epicardial pacing catheter 10 may then be coaxially slid over the guidewire to access the pericardial sack 24.
  • Although not shown and involving another approach, the insertion of a sheath into the pericardial sack 24 may be aided by the use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted into the epicardium, with the guidewire then put in place. The sheath may then be coaxially slid over the guidewire to access the pericardial sack 24. After positioning the sheath in the desired location, the epicardial pacing catheter 10 may then be inserted through the sheath to reach the epicardium 23.
  • For example, the guideway provides coaxial alignment for the at least one of guide wire, sheath or catheter, which can be inside or outside the needle. The at least one guide wire, sheath, or catheter can also be coaxially aligned with one another. Further, multiple lumens may be implement and configured between the plurality of distal apertures and plurality proximal apertures. It should be appreciated that coaxial alignment does not need to be exact, but rather one conduit, lumen, sheath, or guidewire slid outside or inside of another.
  • For example, with the present technology, an epicardial access needle-stick may be implemented in the subxiphoid area of the chest and the epicardial pacing catheter 10 only need be advanced a short distance to get to the heart 21. However, it may immediately be steered though an acute angle to avoid the heart itself Because of this, aspects of the present invention devices and those used in conventional techniques can be contrasted. For instance, conventional endocardial catheters may typically be up to 100 cm in length or longer since they must go from the shoulder to the heart, while an embodiment of the present technology could be, for example, about 20 cm or less since it may only need to go from the chest to the heart. It should be appreciated that the length may be greater than about 20 cm as well. It should be appreciated that the length of the present invention catheter may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • It should be appreciated that as discussed herein, a subject may be a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g. rat, dog, pig, monkey), etc. It should be appreciated that the subject may be any applicable human patient.
  • FIG. 3 schematically illustrates an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system 5 passively disposed within the pericardial sack 24 (shown with hash marks) of the heart 21. A cross section of the heart is shown, revealing critical internal structures, including various great vessels. The epicardial pacing catheter 10 may be used to pace the left ventricle, right ventricle, right atrium, and left atrium. It should be appreciated that the present technology may be used to pace the left ventricle, left atrium, right atrium, right ventricle and/or any combination thereof. The epicardial pacing catheter 10 may first be inserted into the pericardium 22 at the insertion point 33, which may be located at an anterior portion (towards the sternum) of the pericardium 22, adjacent to the left ventricle. The catheter is then advanced posteriorly (towards the spine) within the pericardial sack 24 towards the left atrium, right atrium and transverse sinus. The catheter is further advanced around the posterior of the heart, and pushed anteriorly toward the right ventricle. Once the catheter is in contact with the left ventricle, right ventricle, right atrium and left atrium, a deployable stabilization means may be deployed. Both outward facing bumper tabs 31 and inward facing friction tabs 32 are shown, and prevent the catheter from moving or slipping. The inward facing friction tabs 32 may interact with the outside wall of structures such as, but not limited to, the transverse sinus, superior vena cava, right inferior pulmonary vein, and the right superior pulmonary vein to prevent the catheter from dislodging. The outward facing bumper tabs 31 may push on the pericardium to further secure the catheter 10 against the epicardium (for example, as shown in FIG. 2).
  • FIGS. 4(A)-(C) provide schematic illustrations of some of the operational aspects of an exemplary embodiment of the steering means, system or device associated with the epicardial pacing catheter 10 of the epicardial pacing system. The epicardial pacing catheter 10 further comprises a distal steering means (not shown) and a proximal steering means (not shown) which may have the steering characteristics taught by Mahapatra et al. in PCT International Application No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, ā€œEpicardial Ablation Catheter and Method of Use,ā€ hereby incorporated by reference herein in its entirety. The steering means may comprise guidewires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, strands, other extended elements, or any other method known in the art.
  • For instance, referring to FIGS. 4(A)-(C) of '056816 PCT International Application, there is provided the mechanism of action for obtaining bi-directional steering of the distal tip or portion that may be implemented for the present invention via tensioning or steering means whereby the tip or end is straight, towards the left, and towards the right, respectively.
  • Moreover, for instance and referring to FIGS. 7(A)-7(B) of '056816 PCT International Application there is provided some details of an exemplary mechanism of action for directional steering of the proximal segment of the device that may be implemented for the present technology.
  • Steering adjustments are made along the proximal point of curvature 42 and distal point of curvature 41 using the proximal steering means (as shown in FIG. 15(B)) and distal steering means (not shown) respectively. The proximal point of curvature 42 may be located between about 1 cm and about 25 cm from the proximal end and the distal point of curvature 41 may be located between about 1 cm and about 20 cm from the distal end. It should be appreciated that the proximal and distal points of curvature may be located at other longer or shorter points and may be implemented as may be desired or required according to medical procedures, device/system operations and anatomical considerations. The steering means are used to direct the epicardial pacing catheter 10 through or navigate it within a patient's body. It should be noted that, while two steering means and points of curvature are shown, the epicardial pacing catheter 10 may further comprise a third and fourth steering means for steering the epicardial pacing catheter 10 around a third and fourth point of curvature. Moreover, though a bi-directional distal point of curvature 41 is shown, it should be appreciated that all points of curvature may be uni-directional, bi-direction, tri-direction, quadra-directional, or greater than quadra-directional.
  • Specifically, FIG. 4(A) shows an embodiment of the epicardial pacing catheter 10 in the non-deflected state. FIG. 4(B) shows the epicardial pacing catheter 10 in a partially-deflected state. FIG. 4(C) shows the epicardial pacing catheter 10 in a fully-deflected state, as would be the case when it has been navigated into the pericardial space of a subject's heart, or other space or structure. In the fully-deflected state, the at least one electrode 43 is held against a patient's heart by the stabilization means, shown as the inward facing friction tabs 32 and outward facing bumper tabs 31.
  • The devices, systems, compositions and methods of various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents. Similarly, the steering means, actuator means (as will be discussed below) and navigation means of the various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents, and which are hereby incorporated by reference herein in their entirety:
    • 1. U.S. Patent Application Publication No. 20050251094, Nov. 10, 2005, ā€œSystem and method for accessing the coronary sinus to facilitate insertion of pacing leadsā€, Peterson, Eric D.
    • 2. U.S. Patent Application Publication No. 20040147826, Jul. 29, 2004, ā€œSystem and method for accessing the coronary sinus to facilitate insertion of pacing leadsā€, Peterson, Eric D.
    • 3. U.S. Pat. No. 6,928,313, Aug. 9, 2005, ā€œSystem and method for accessing the coronary sinus to facilitate insertion of pacing leadsā€, Peterson, Eric D.
    • 4. U.S. Pat. No. 7,004,937, Feb. 28, 2006, ā€œWire reinforced articulation segmentā€, Lentz, David J., et al.
    • 5. U.S. Patent Application Publication No. 20040024413, Feb. 5, 2004, ā€œWire reinforced articulation segmentā€, Lentz, David J., et al.
    • 6. U.S. Patent Application Publication No. 20060064056, Mar. 23, 2006, ā€œGuiding catheter assembly for embolic protection by proximal occlusionā€, Coyle, James, et al.
    • 7. U.S. Patent Application Publication No. 20030181855, Sep. 25, 2003, ā€œPre-shaped catheter with proximal articulation and pre-formed distal endā€, Simpson, John A., et al.
    • 8. U.S. Pat. No. 6,869,414, Mar. 22, 2005, ā€œPre-shaped catheter with proximal articulation and pre-formed distal endā€, Simpson, John A., et al.
    • 9. U.S. Patent Application Publication No. 20080262432, Oct. 23, 2008, ā€œSystem and method for manipulating a guidewire through a catheterā€, Miller, Sean.
    • 10. U.S. Patent Application Publication No. 20070016068, Jan. 18, 2007, ā€œUltrasound methods of positioning guided vascular access devices in the venous systemā€, Grunwald, Sorin, et al.
    • 11. U.S. Patent Application Publication No. 20070016070, Jan. 18, 2007, ā€œEndovascular access and guidance system utilizing divergent beam ultrasoundā€, Grunwald, Sorin, et al.
    • 12. U.S. Patent Application Publication No. 20070016072, Jan. 18, 2007, ā€œEndovenous access and guidance system utilizing non-image based ultrasoundā€, Grunwald, Sorin, et al.
    • 13. U.S. Pat. No. 5,916,194, Jun. 29, 1999, ā€œCatheter/guide wire steering apparatus and methodā€, Jacobsen, Stephen C., et al.
    • 14. U.S. Patent Application Publication No. 20070016069, Jan. 18, 2007, ā€œUltrasound sensorā€, Grunwald, Sorin, et al.
    • 15. U.S. Pat. No. 6,500,130, Dec. 31, 2002, ā€œSteerable guidewireā€, Kinsella, Bryan, et al.
    • 16. U.S. Patent Application Publication No. 20020082523, Jun. 27, 2002, Steerable guidewireā€, Kinsella, Bryan, et al. . . .
    • 17. U.S. Patent Application Publication No. 20060025705, Feb. 2, 2006, ā€œMethod for use of vascular guidewireā€, Whittaker, David R., et al.
    • 18. U.S. Patent Application Publication No. 20050020914, Jan. 27, 2005, ā€œCoronary sinus access catheter with forward-imagingā€, Amundson, David, et al.
    • 19. U.S. Patent Application Publication No. 20040034365, Feb. 19, 2004, ā€œCatheter having articulation systemā€, Lentz, David J., et al.
    • 20. U.S. Patent Application Publication No. 20060064058, Mar. 23, 2006, ā€œGuiding catheter with embolic protection by proximal occlusionā€, Coyle, James.
    • 21. U.S. Patent Application No. 20080097399, ā€œCatheter with adjustable stiffness, Sachar, Ravish, et al.
    • 22. U.S. Patent Application Publication No. 20080051671, Feb. 28, 2008, ā€œIntravascular filter monitoringā€, Broome, Thomas E., et al.
    • 23. U.S. Pat. No. 6,616,676, Sep. 9, 2003, ā€œDevices and methods for removing occlusions in vesselsā€, Bashiri, Mehran, et al.
    • 24. U.S. Patent Application Publication No. 20020072737, Jun. 13, 2002, ā€œSystem and method for placing a medical electrical leadā€, Belden, Elisabeth L., et al.
    • 25. U.S. Pat. No. 7,004,937, Feb. 28, 2006, ā€œWire reinforced articulation segmentā€, Lentz, David J., et al.
    • 26. U.S. Patent Application Publication No. 20040024413, Feb. 5, 2004, ā€œWire reinforced articulation segmentā€, Lentz, David J, et al.
    • 27. U.S. Patent Application Publication No. 20060064056, Mar. 23, 2006, ā€œGuiding catheter assembly for embolic protection by proximal occlusionā€, Coyle, James, et al.
    • 27. U.S. Pat. No. 6,869,414, Mar. 22, 2005, ā€œPre-shaped catheter with proximal articulation and pre-formed distal endā€, Simpson, John A., et al.
    • 28. U.S. Patent Application Publication No. 20070016068, Jan. 18, 2007, ā€œUltrasound methods of positioning guided vascular access devices in the venous systemā€, Grunwald, Sorin, et al.
    • 28. U.S. Patent Application Publication No. 20070016070, ā€œEndovascular access and guidance system utilizing divergent beam ultrasoundā€, Grunwald, Sorin, et al.
    • 29. U.S. Patent Application Publication No. 20070016072, ā€œEndovenous access and guidance system utilizing non-image based ultrasoundā€, Grunwald, Sorin, et al
    • 30. U.S. Patent Application Publication No. 20080262432, Oct. 23, 2008, ā€œSystem and method for manipulating a guidewire through a catheterā€, Miller, Sean.
    • 31. U.S. Patent Application Publication No. 20070016069, Jan. 18, 2007, ā€œUltrasound sensorā€, Grunwald, Sorin.
    • 32. U.S. Patent Application Publication No. 20060025705, Feb. 2, 2006, ā€œMethod for use of vascular guidewireā€, Whittaker, David R., et al.
    • 33. U.S. Patent Application Publication No. 20030181855, Sep. 25, 2003, ā€œPre-shaped catheter with proximal articulation and pre-formed distal endā€, Simpson, John A., et al.
    • 34. U.S. Patent Application Publication No. 20050020914, Jan. 27, 2005, ā€œCoronary sinus access catheter with forward-imagingā€, Amundson, David, et al.
    • 35. U.S. Pat. No. 5,916,194, Jun. 29, 1999, ā€œCatheter/guide wire steering apparatus and methodā€, Jacobsen, Stephen C., et al.
    • 36. U.S. Patent Application Publication No. 20060064058, Mar. 23, 2006, ā€œGuiding catheter with embolic protection by proximal occlusionā€, Coyle, James.
    • 37. U.S. Patent Application Publication No. 20040186507, Sep. 23, 2004, ā€œStent delivery system and method of useā€, Hall, Todd A., et al.
    • 38. U.S. Patent Application Publication No. 20050027243, Feb. 3, 2005, ā€œSteerable catheterā€, Gibson, Charles A.
    • 39. U.S. Pat. No. 7,232,422, Jun. 19, 2007, ā€œSteerable catheterā€, Gibson, Charles A., et al.
    • 40. U.S. Patent Application Publication No. 20060247522, Nov. 2, 2006, ā€œMagnetic navigation systems with dynamic mechanically manipulatable cathetersā€, McGee, David L.
    • 41. U.S. Pat. No. 6,783,510, Aug. 31, 2004, ā€œSteerable catheterā€, Gibson, Charles A., et al.
    • 42. U.S. Patent Application Publication No. 20080015625, Jan. 17, 2008, ā€œShapeable for steerable guide sheaths and methods for making and using themā€, Ventura, Christine P., et al.
  • FIGS. 5(A)-5(D) schematically illustrate a number of embodiments of the epicardial pacing catheter 10 of the epicardial pacing system near the distal portion.
  • FIG. 5(A) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV) of a patient's heart. A number of electrodes 43 are adapted to transmit electrical energy to the left ventricle, and are shown facing the left ventricle. The number of electrodes 43 may vary depending on the number of locations required or desired to be paced. The electrodes 43 may be insulated on at least one side away from the heart, as to prevent electrical energy from being transmitted to proximate anatomical structures. The insulation may be about 2 mm thick, and may extend longitudinally through the epicardial pacing catheter 10. It should be appreciated that the thickness may be wider or narrower as desired or required according to medical procedures, device/system operations and anatomical considerations. Further, the insulation may comprise Teflon, silicone, polyurethane, and/or any combination thereof or any other non-conductive material known in the art.
  • Outward facing bumper tabs 31 are deployable, and are used to stabilize the epicardial pacing catheter 10 by pushing against the pericardium. As shown, the outward facing bumper tabs 31 are in the non-deployed state as to allow the epicardial pacing catheter 10 to move within the pericardium. Although not shown, the epicardial pacing catheter may further comprise inward facing friction tabs 32 or other stabilization means.
  • The epicardial pacing catheter 10 further comprises a distal tip 51 in communication with the epicardial pacing catheter 10. The distal tip 51 extends from the body of the catheter 10 and may further insulate the electrodes 43 from proximate anatomical structures and/or be used to push through harder anatomical structures and adhesions as desired or required.
  • FIG. 5(B) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV) and left atrium (LA) of a patient's heart. Additional electrodes 43 near the distal point of curvature 41 are shown. These electrodes 43 may be in communication with the outside wall of the left atrium in order to pace said structure. Additional outward facing bumper tabs 31 are present to press against the pericardium in more distal locations. Inward facing friction tabs 32 are now shown. The inward facing friction tabs 32 may be deployed to catch, drag, stick to, or pull on adjacent anatomical structures to keep the epicardial pacing catheter 10 from moving. FIG. 5(B) shows an example embodiment wherein both the inward facing friction tabs 32 and outward facing bumper tabs 33 are in the non-deployed state to allow movement of the catheter 10.
  • FIG. 5(C) schematically illustrates an exemplary embodiment wherein the epicardial pacing catheter 10 may be used to pace the left ventricle (LV), left atrium (LA), and right atrium (RA). Additional electrodes 43 are located near the distal point of curvature 41. These electrodes 43 may be in communication with the outside wall of the right atrium in order to pace said structure. Further, additional outward facing bumper tabs 31 are present to press against the pericardium in more distal locations.
  • FIG. 5(D) shows an example embodiment wherein the epicardial pacing catheter 10 may be used to pace multiple points on the left ventricle (LV), left atrium (LA), right atrium (RA), and right ventricle (RV). Additional electrodes 43 are shown in a more distal location in order to transmit electrical energy to the right ventricle. Further, additional inward facing bumper tabs 32 are present to catch, drag, stick to, or pull on adjacent anatomical structures to keep the epicardial pacing catheter 10 from moving.
  • It should be appreciated that in FIGS. 5(A)-5(D) both the number of inward facing friction tabs 32 and outward facing bumper tabs 31 may vary as desired or required to stabilize the epicardial pacing catheter 10. Moreover, inward facing friction tabs 32 may be located proximal or distal to any outward facing bumper tab 31. Further, outward facing bumper tabs 31 may be located proximal or distal to any inward facing friction tab 32. Further, outward facing bumper tabs 31 and inward facing friction tabs 32 may be positioned at the same location on the epicardial pacing catheter 10 as desired or required.
  • It should be appreciated that in FIGS. 5(A)-5(D) any number of electrodes 43 may be present as desired or required to pace a number of locations on the heart of a patient. Moreover, each electrode 43 could be turned on separately in a unipolar or bipolar fashion, allowing for pacing of different chambers and different parts of the same chamber at different times. This has an important advantage: if a region of tissue ever dies in heart attack, pacing can be accomplished from a different location.
  • It should be appreciated that the inward facing friction tabs and outward facing bumper tabs may be alternated with one another, be staggered with one another, or grouped in numbers among each other as desired or required according to medical procedures, device/system operations and anatomical considerations.
  • FIGS. 6(A)-6(F) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system from the most distal end to a more proximal point.
  • FIG. 6(A) schematically illustrates a cross sectional view of an exemplary embodiment of the most distal portion of the epicardial pacing catheter 10 of the epicardial pacing system. The epicardial pacing catheter 10 further comprises a fluid lumen 61. The fluid lumen occupies internal cross-sectional area of the epicardial pacing catheter 10. The fluid lumen 61 may extend from an aperture (not shown) in the proximal end of the catheter 10 to a distal fluid aperture 55. Both the distal fluid aperture 55 and a proximal fluid aperture (not shown) are adapted for the emitting and extracting of a fluid, drug, or agent. The fluid, drug, or agent may be used, but is not necessarily used, to cool the electrodes 43, regulate heart activity, or distend proximal anatomical structures. The proximal fluid aperture (not shown) is connected to an external fluid, drug, or agent source (not shown). The emitting and extracting of a fluid, drug, or agent may be controlled by an external control handle 150 (as shown, for example, in FIG. 15) in communication with the proximal end and fluid, drug, or agent source. It should be appreciated that the fluid, drug, or agent to flow through the epicardial pacing catheter 10 may be at least one of the following: agent, substance, material, saline solutions, thrombolytic agents, clot lysis agents, chemotherapies, cell slurries, gene therapy vectors, growth factors, contrast agents, angiogenesis factors, radionuclide slurries, anti-infection agents, anti-tumor compounds, receptor-bound agents and/or other types of drugs, therapeutic agent and/or diagnostic agent or any combination thereof.
  • FIG. 6(B) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system located proximal to the distal point of curvature 41. Both the first distal steering pull-wire 68 and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion of said catheter 10. The first distal steering pull-wire 68 and second distal steering pull-wire 69 may be controllably connected to a control means (as shown, for example, in FIG. 15) in communication with the proximal portion of the epicardial pacing catheter 10.
  • The epicardial pacing catheter 10 may further comprise a stabilization means. The stabilization means may be deployable and may comprise an inward facing friction tab 32, an outward facing bumper tab 31, a non-deployable protrusion, a screw, a hook, or other means known in the art.
  • In an example embodiment, a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31. The tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope. The tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art. The tab deployment rod 64 may further be controllably connected to a control means (as shown, for example, in FIG. 15) in communication with the epicardial pacing catheter 10, said control means used to control the deployment of the stabilization means. Further, the tab deployment rod 64 is in communication with a number of tab deployment arms 65, wherein each tab deployment arm 65 can be actuated to deploy the inward facing friction tab 32 or outward facing bumper tab 31.
  • FIG. 6(C) schematically illustrates a more proximal cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system. The anode wire 62 extends longitudinally from the most proximal portion of the epicardial pacing catheter 10 to the most distal anode 63. The anode wire 62 may be in communication with one or more anodes 63 located throughout the epicardial pacing catheter 10. Further, the anode wire 62 is adapted for transmitting and receiving electrical energy. The anode wire 62 may be controllably connected to a control means (as shown, for example, in FIG. 15) in communication with the proximal portion of the epicardial pacing catheter 10.
  • An outward facing bumper tab 31 is shown in communication with the epicardial pacing catheter 10. The outward facing bumper tab 31 may be deployed by a tab deployment arm 65 in communication with the tab deployment rod 64.
  • FIG. 6(D) schematically illustrates a more proximal cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system located proximal to the proximal point of curvature 42. The epicardial pacing catheter 10 further comprises a second steering means. The second steering means comprises a first proximal steering pull-wire 70 and a second proximal steering pull-wire 71. Both the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion of said catheter 10. The first proximal steering pull-wire 70 and second proximal steering pull-wire 71 may be controllably connected to a control means (as shown, for example, in FIG. 15) in communication the proximal portion of the epicardial pacing catheter 10.
  • FIG. 6(E) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system. A cathode wire 66 extends longitudinally from the most proximal portion of the epicardial pacing catheter 10 to the most distal cathode 67. The cathode wire 66 may be in communication with one or more cathodes 67 located throughout the epicardial pacing catheter 10. Further, the cathode wire 66 is adapted for transmitting and receiving electrical energy. The cathode wire 66 may be controllably connected to a control means (as shown, for example, in FIG. 15) in communication with the proximal portion of the epicardial pacing catheter 10.
  • FIG. 6(F) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system. An outward facing bumper tab 31 is shown in communication with the epicardial pacing catheter 10. The outward facing bumper tab 31 may be deployed by a tab deployment arm 65 in communication with a tab deployment rod 64. It should be appreciated that the number of port holes, lumens, wires or rods may vary as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • FIGS. 7(A) and 7(B) schematically illustrate a cross sectional view of an exemplary embodiment of the proximal end 73 of the epicardial pacing catheter 10 of the epicardial pacing system and the most distal end 74 of the control means 150 respectively. In FIG. 7(A), twelve electrode wires, including six anode wires 62 and six cathode wires 66, occupy internal cross-sectional area of the epicardial pacing catheter 10. Each anode wire 62 and cathode wire 66 extends longitudinally through the epicardial pacing catheter 10 towards the distal portion. The cathode wire 66 may be in communication with one or more cathodes 67 located throughout the epicardial pacing catheter 10. The anode wire 62 may be in communication with one or more anodes 63 located throughout the epicardial pacing catheter 10.
  • It should be appreciated that any number of electrodes 43, otherwise known as anodes 63 and cathodes 67, may be present as desired or required to pace a number of locations on the heart of a patient. A single anode wire 62 may be used to provide electrical energy to a multitude of anodes 63, or each anode wire 62 can provide electrical energy to a single anode 63. A single cathode wire 66 may be used to provide electrical energy to a multitude of cathodes 67, or each cathode wire 66 can provide electrical energy to a single cathode 67. Moreover, electrical energy can be transmitted to each electrode 43 separately in a unipolar or bipolar fashion, allowing for pacing of different chambers and different parts of the same chamber at different times.
  • Further, a first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10. Each first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 extends longitudinally through the epicardial pacing catheter 10 towards the distal portion. Each first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 may comprise guidewires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, strands, other extended elements, or any other method known in the art.
  • Further, a first tab deployment rod 64 and second tab deployment rod 72 occupy internal cross-sectional area of the epicardial pacing catheter 10. Each first tab deployment rod 64 and second tab deployment rod 72 extends longitudinally from the most proximal portion 73 of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31. The first tab deployment rod 64 and second tab deployment rod 72 may comprise a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, magnetic guidance means, chains, bands, chords, or rope. The first tab deployment rod 64 and second tab deployment rod 72 may comprise a non-conductive material having high tensile strength as is known in the art. The first tab deployment rod 64 and second tab deployment rod 72 may further be controllably connected to the distal end 74 of a control means 150 in communication with the proximal end 73 of the epicardial pacing catheter 10, said control means used to control the deployment of the tabs.
  • It should be noted that, while a first tab deployment rod 64 and second tab deployment rod 72 are shown, any number of tab deployment rods may be present as desired or required, up to an including the sum of inward facing friction tabs 32 and outward facing bumper tabs 31 (See FIGS. 6(A)-(E)).
  • Although not shown, in an example embodiment, a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10. The biocompatible cover may prevent fibrosis from occurring around the exposed structures of the epicardial pacing catheter 10.
  • Although not shown, in an example embodiment, the proximal end 73 of the epicardial pacing catheter 10 may be located just under the skin of a patient. The proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
  • Although not shown, in an example embodiment, all structures beginning at the proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10. In this way, the proximal end 73 could act as a male connector in a male-female connection. It should be appreciated that the corresponding male-female connection may be reversed as well.
  • FIG. 7(B) shows a cross sectional view of an example embodiment of the most distal portion 74 of a control handle 150. In this particular embodiment, the control handle 150 can be controllably connected to the most proximal portion 73 of the epicardial pacing catheter 10. Wire grippers 75 around each of the internal structures facilitate a secure connection between structures integral the control handle 150 and structures integral the epicardial pacing catheter 10.
  • Although not shown, in an example embodiment, all structures within the control handle 150 may end before the distal end 74. In this way, the distal end 74 can act as a female connector in a male-female connection.
  • It should be appreciated that the number of lumens, wires, rods or elements discussed with regards to FIG. 7 may vary as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
  • FIGS. 8(A)-(C) schematically illustrate cross-sectional views of an example embodiment wherein the epicardial pacing catheter 10 further comprises a stabilization means for stabilizing the epicardial pacing catheter 10. The stabilization means may comprise at least one deployable member. The stabilization means allows the rotational orientation of the distal portion of the epicardial pacing catheter 10 to remain fixed in place relative to the surface of the heart. If the distal portion of the epicardial pacing catheter 10 were allowed to rotate so that the electrodes 43 faced away from the heart, pacing could not be achieved and adjacent anatomical structures would receive harmful electronic energy.
  • FIGS. 8(A)-(C) illustrate an exemplary embodiment wherein the stabilization means is an inward facing friction tab 32. The inward facing friction tab 32 comprises a catheter-side surface 82 and an anatomical-side surface 83. The anatomical-side surface 83 comprises a lubricious surface that may be navigated through anatomical structures without sticking or catching. The catheter-side surface 82 comprises a rough surface having a larger coefficient of friction than the anatomical-side surface. The catheter-side surface may further comprise a textured surface to increase friction. Both the catheter-side surface 82 and anatomical-side surface 83 comprise a non-conductive material, such as, but not limited to polyurethane, Teflon, silicone, a radio-opaque material, or similarly lubricious material, or other materials known in the art.
  • FIG. 8(A) illustrates an exemplary embodiment wherein the stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the inward facing friction tab 32. Though the stabilizer actuator is illustrated as a tab deployment rod 64 in communication with a tab joint 84, tab hinge 81, and tab deployment arm 65, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • In an embodiment, a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32. The tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, pole, thread, filament, cord, strand or rope. The tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art. The tab deployment rod may further be controllably connected to a control means or control handle (as shown, for example, in FIG. 15) in communication with the epicardial pacing catheter 10 of the epicardial pacing system 5, and the control means may be used to control the deployment of the tabs.
  • The tab deployment rod 64 is in communication with a tab joint 84, the tab joint 84 in connection with a tab deployment arm 65 having its endpoint within the inward facing friction tab 32. The tab deployment arm is in further communication with a tab hinge 81.
  • When the inward facing friction tab 32 is in the non-deployed state, the epicardial pacing catheter 10 may be moved, navigated, or slid within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
  • FIG. 8(B) illustrates an embodiment wherein the stabilization means is an inward facing friction tab 32 in the partially-deployed state. When the tab deployment rod 64 is pushed toward the distal end of the epicardial pacing catheter 10, the tab deployment arm 65 is pulled or tensioned. This causes the inward facing friction tab 32 to separate from the catheter body, exposing the rough catheter-side 82 to proximate anatomical structures.
  • FIG. 8(C) illustrates an embodiment wherein the stabilization means is an inward facing friction tab 32 in the fully-deployed state.
  • Although not shown, the outward facing bumper tabs 31 may be deployed using the same means and methods as described above.
  • Although not shown, the stabilization means may comprise one or more protrusions for engaging proximal anatomical structures such as the pericardium and/or the epicardium. The protrusions may be non-deployable. Further, the protrusions may comprise a non-conductive material, such as, but not limited to, silicone, polyurethane, Teflon, a radio-opaque material, or other materials known in the art.
  • It should be appreciated that the hinge devices and joint devices may be a number of elements such as, but not limited thereto, a fulcrum, swivel, gear, elbow, pivot, thrust or the like.
  • It should be appreciated that the tab devices may be a number of elements such as, but not limited thereto, finger, stud, post, tongue, spring, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
  • FIG. 9 schematically illustrates an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system in relation to the heart 21 and further comprising at least one deployable member. The epicardial pacing catheter 10 has been steered around its distal point of curvature 41, and is positioned in the pericardial space, cavity or sack 24, or the area between the pericardium 22 and epicardium 23. In an embodiment, the deployable member comprises at least one electrode 43, and each electrode 43 is facing the heart 21. The electrodes 43 may be deployed from the epicardial pacing catheter 10 and are fixed to the epicardium 23 when in the fully-deployed state. The epicardial pacing catheter 10 may further comprises an insulating hood 101 in communication with the epicardial pacing catheter 10.
  • FIG. 10(A) schematically illustrates a top view of an example embodiment of the epicardial pacing catheter 10 of the epicardial pacing system. The epicardial pacing catheter further comprises a insulating hood 101 extending from beyond the distal point of curvature 41 to a distal tip 51. The hood may serve as a cushioning and/or alignment means for the distal tip 51 relative to adjacent anatomical structures. It should be appreciated that some portion of the distal tip shall have insulation to protect from adjacent anatomical structures. The shape of the distal tip and hood may vary according to medical procedures, device/system operations and anatomical considerations.
  • FIG. 10(B) schematically illustrates a bottom view of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system. An anode 63 and cathode 67 are shown in communication with the epicardial pacing catheter 10. In an embodiment, the contact zones containing the anode 63 and cathode 67 electrodes are about 2 mm in length and about 1 mm in width, and are located centrally within the underside surface of the insulating hood 101. It should be appreciated that the width of the electrodes may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations. The insulating hood extends from a distal location beyond the distal point of curvature 41 to a distal tip 51.
  • FIG. 10(C) schematically illustrates an axial view of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system looking at the distal tip 51 of the insulating hood 101. A single electrode 43 can be seen on the underside of the epicardial pacing catheter 10.
  • FIG. 10(D) schematically illustrates a side view of an exemplary embodiment of the epicardial pacing catheter 10 comprising an insulating hood 101, distal tip 51, and two electrodes 43. The insulating hood 101 extends over the side of the epicardial pacing catheter 10.
  • It should be appreciated that in FIGS. 10(A)-(D) any number of electrodes 43 may be present as desired or required to pace any number of locations on the heart of a patient. Moreover, each electrode 43 could be powered separately in a unipolar or bipolar fashion, allowing for pacing of different parts of the same chamber at different times.
  • FIG. 11(A)-11(E) schematically illustrate cross sectional views of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system from a point located proximal to the most distal anode 62 or cathode 67 and distal to the distal point of curvature 41 to a point located at the most proximal point 73 of the epicardial pacing catheter 10. FIG. 11(F) schematically illustrates a cross sectional view of an exemplary embodiment of the external control handle 150 at the most distal point 74.
  • FIG. 11(A) schematically illustrates a cross section of an example embodiment of the epicardial pacing catheter 10 located more distal than the distal point of curvature 41 and proximal to the most distal anode 62 or cathode 67. An anode wire 62, cathode wire 66, electrode pull-wire 112, and second-electrode pull-wire 113 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal portion 73 of said catheter 10. The anode wire 62, cathode wire 66, electrode pull-wire 112, and second-electrode pull-wire 113 may comprise longitudinal structures, such as, but not limited to, push-rods, pull-rods, wires, strings, or ropes. Further, the anode wire 62, cathode wire 66, electrode pull-wire 112, and second-electrode pull-wire 113 may be controllably connected to a control handle 150 in electrical communication with the most proximal point 73 of the epicardial pacing catheter 10.
  • The anode wire 62 and electrode pull-wire 112 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal anode 63. The cathode wire 66 and second electrode pull-wire 113 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal cathode 67.
  • FIG. 11(B) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the distal point of curvature 41. The epicardial pacing catheter 10 further comprises a first distal steering pull-wire 68 and a second distal steering pull-wire 69 fixed to distal steering anchors 110 in communication with the epicardial pacing catheter 10. The distal steering anchors 110 comprise a material with requisite strength to hold the first distal steering pull-wire 68 and second distal steering pull-wire 69 in place. The first distal steering pull-wire 68 and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10 and extend longitudinally to the most proximal point 73 of said catheter 10. The first proximal steering pull-wire 68 and second proximal steering pull-wire 69 may be controllably connected to a control handle 150 in communication with the most proximal point 73 of the epicardial pacing catheter 10.
  • FIG. 11(C) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located between the distal point of curvature 41 and proximal point of curvature 42.
  • FIG. 11(D) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the proximal point of curvature 42. The epicardial pacing catheter 10 further comprises a proximal steering pull-wire 70 fixed to a proximal steering anchor 111 in communication with the epicardial pacing catheter 10. The proximal steering anchor 111 comprises a material with requisite strength to hold the proximal steering pull-wire 70. The proximal steering pull-wire 70 occupies internal cross-sectional area of the epicardial pacing catheter 10 and extends longitudinally to the most proximal point 73 of said catheter 10. The proximal steering pull-wire 70 can be controllably connected to a control handle 150 or control means in communication with the most proximal point 73 of the epicardial pacing catheter 10.
  • FIG. 11(E) schematically illustrates a more proximal cross section of an example embodiment of the epicardial pacing catheter 10 located at the most proximal point 73.
  • It should be noted that, while a single anode wire 62, electrode pull-wire 112, cathode wire 66, and second electrode pull-wire 113 are shown, any number of anode wires 62, electrode pull-wires 112, cathode wires 66, and second electrode pull-wires 113 may be present as desired or required, up to and including, for example, the total number of electrodes 43 (or the sum of the anodes 63 and cathodes 67).
  • Although not shown, in an example embodiment, a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10. The biocompatible cover can prevent fibrosis from occurring around the exposed wires of the epicardial pacing catheter 10.
  • Although not shown, in an example embodiment, the proximal end 73 of the epicardial pacing catheter 10 is located just under the skin of a patient (or location(s) as desired or required). The proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
  • Although not shown, in an example embodiment, all structures beginning at the proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10. In this way, the proximal end 73 could act as a male connector in a male-female connection. The male-female arrangement may be reversed if desired or required.
  • FIG. 11(F) schematically illustrates a cross sectional view of an example embodiment of the most distal portion 74 of a control handle 150. In this particular embodiment, the control handle 150 can be controllably connected to the most proximal portion 73 of the epicardial pacing catheter 10. Wire grippers 75 (or other retention means or devices) around each of the internal structures facilitate a secure connection between structures integral the control handle 150 and structures integral the epicardial pacing catheter 10.
  • Although not shown, in an example embodiment, all structures within the control handle or control means may end before the distal end 74. In this way, the distal end 74 can act as a female connector in a male-female connection (or female-male connection).
  • FIG. 12(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system comprising a deployable stabilization means in an un-deployed state. The deployable stabilization means comprises an anode 63 and cathode 67 in communication with a hook 124. The hook 124, anode 63, and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver or iridium, and/or alloys thereof.
  • The stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a joint 121, and hinge 122, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • It should be appreciated that the hook devices may be a number of elements such as, but not limited thereto, pin, claw, latch, finger, stud, spring, post, tongue, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
  • In an embodiment, an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43, which may comprise an anode 63 or cathode 67. The electrode pull-wire 112 is in communication with a joint 121, the joint 121 in further communication with a hinge 122.
  • In an embodiment, the electrode pull-wire 112 may comprise a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 may further be controllably connected to a control means (for example, as shown in FIG. 15) in communication with the epicardial pacing catheter 10 and epicardial pacing system. The control means may be used to control the deployment of the anode 63 and cathode 67 in communication with hooks 124, and any of the devices, systems, subsystems, elements, and devices discussed throughout this disclosure.
  • In an embodiment, the epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter. The epicardial pacing catheter 10 further comprises a number of bumpers 120 in communication with the bottom of the epicardial pacing catheter 10. In an approach, the bumpers enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to be in communication with the epicardium.
  • When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
  • FIG. 12(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising a deployable anode 63 and cathode 67 in a fully-deployed state. When the electrode pull-wire 112 is pushed toward the distal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are splayed outward to a 90 degree angle, or an angel(s) as desired or required. This causes the anode 63 and cathode 67 to separate from the catheter body, allowing the hooks 124 to engage proximate anatomical structures, such as the epicardial wall. When the deployable anode 63 and cathode 67 are in the fully-deployed state, the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart. If the distal portion of the epicardial pacing catheter 10 were allowed to rotate so that the electrodes 43 faced away from the heart, pacing could not be achieved and adjacent anatomical structures would receive harmful electronic energy.
  • It should be appreciated that in FIGS. 12(A) and (B) any number of deployable electrodes 43 may be present as desired or required to pace any number of locations on the heart of a patient.
  • It should be appreciated that when the electrode pull-wire 112 is pulled toward the proximal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are drawn back into place within the catheter 10.
  • FIG. 13(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 of the epicardial pacing system comprising a deployable stabilization means in an un-deployed state. The deployable stabilization means comprises a number of screws 130 in communication with an anode 63 and cathode 67. The screws 130, anode 63, and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver and/or iridium, and/or alloys thereof.
  • The stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the screws 130 in communication with the anode 63 and cathode 67. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a gear 131, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand, or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • It should be appreciated that the screw devices may comprise a number of elements such as, but not limited thereto, any translatable protrusion or extension for instance. Some non-limiting examples may include: toggle, press, slide, spring, stud, post, tongue, projection, pedestal, protuberance, contact, or the like.
  • In an embodiment, an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43, which may be an anode 63 or cathode 67. The electrode pull-wire 112 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope. The electrode pull-wire 112 may be made of a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 may further be controllably connected to a control means (as shown, for example, in FIG. 15) in communication with the epicardial pacing catheter 10 and epicardial pacing system. The control means may be used to control the deployment of the screws 130 in communication with the anode 63 and cathode 67.
  • The epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter.
  • When the screws 130 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
  • FIG. 13(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising fully-deployed screws 130 in communication with the anode 63 and cathode 67. When the electrode pull-wire 112 is pushed toward the distal end of the epicardial pacing catheter 10, the gears 131 are activated and the screws 130 are rotationally-actuated. This causes the screws 130 to engage proximate anatomical structures, such as the epicardial wall. When the screws 130 are in the fully-deployed state, the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart. The electrical energy is transmitted from the anode 63 and cathode 67 through the screws 130 and into the heart.
  • It should be appreciated that in FIGS. 13(A) and (B) any number of deployable screws 130 may be present as desired or required to pace any number of locations on the heart of a patient.
  • FIG. 14(A) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 epicardial pacing system comprising a deployable stabilization means in an un-deployed state. The deployable stabilization means comprises an anode 63 and cathode 67 in communication with a hook 124. The hooks 124, anode 63, and cathode 67 comprise conductive materials, such as, but not limited to, copper, platinum, gold, silver and/or iridium, or alloys thereof.
  • The deployable stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 and second electrode pull-wire 113 in communication with a number of joints 121, and hinges 122, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, thread, filament, cord, strand, rope, pole, or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
  • In an embodiment, an electrode pull-wire 112 and second electrode pull-wire 113 extend longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal anode 63 and cathode 67 respectively. The electrode pull-wire and second electrode pull-wire 113 are in communication with a number of joints 121, the joints 121 in further communication with a number of hinges 122. The electrode pull-wire 112 and second electrode pull-wire 113 may comprise longitudinal structures, such as, but not limited to, push-rods, pull-rods, wires, thread, filament, cord, strand, strings, or ropes. The electrode pull-wire 112 and second electrode pull-wire 113 may be made of a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 and second electrode pull-wire 113 may further be controllably connected to a control means (for example, as shown in FIG. 15) in communication with the epicardial pacing catheter 10 and epicardial pacing system. The control means may used to control the deployment of the anode 63 and cathode 67 in communication with hooks 124.
  • The epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter. The epicardial pacing catheter 10 may further comprise a number of bumpers 120 in communication with the epicardial pacing catheter 10. The bumpers 120 enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to communicate with the heart.
  • When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
  • FIG. 14(B) schematically illustrates a cross section of an exemplary embodiment of the epicardial pacing catheter 10 comprising a deployable anode 63 and cathode 67 in a fully-deployed state. When the electrode pull-wire 112 and second electrode pull-wire 113 are pulled toward the proximal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are splayed outward to a 90 degree angle. This causes the anode 63 and cathode 67 to separate from the catheter body, allowing the hooks 124 to engage proximate anatomical structures, such as the epicardial wall. When the deployable anode 63 and cathode 67 are in the fully-deployed state, the rotational orientation of the distal portion of the epicardial pacing catheter 10 remains fixed in place relative to the surface of the heart. The electrical energy is transmitted from the anode 63 and cathode 67 through the hooks 124 and into the heart.
  • It should be appreciated that in FIGS. 14(A) and (B) any number of deployable anodes 63 and cathodes 67 may be present as desired or required to pace any number of locations on the heart of a patient.
  • It should be appreciated that when the electrode pull-wire 112 and second electrode pull-wire are pushed toward the distal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are drawn back into place within the catheter 10.
  • It should be appreciated that regarding deployment discussed throughout, varying degrees of deployment may be achieved or implemented as desired or required.
  • FIG. 15(A) schematically illustrates an example embodiment of an external control handle 150 (that may be associated with, although not shown, the epicardial pacing catheter of the system). The epicardial pacing catheter and system further comprises a control means, wherein said control means is an external control handle 150. The external control handle 150 may be in communication with the most proximal point 73 of the epicardial pacing catheter 10. The external control handle 150 may have integral to it the distal steering control means 154, the proximal control means 154, the irrigation control means (not shown) and the control means for the stabilization means 151. The stabilization control means 154 may be used to regulate the degree of extension of said stabilization means via a pull-wire or pushrod arrangement or some other suitable tensioning or actuating means know in the art. The external control handle 150 may further comprise a pull-rod control aperture 152, wherein a tab deployment rod 64 and second tab deployment rod (not shown) may be inserted.
  • The external control handle 150 is preferably sized to be grasped, held and operated by a user. It should be appreciated that other control and operating interface members, devices, or means may be utilized for the handle. Attached to the proximal end of the control handle 150 is the handle proximal port (not shown) from which anode wires 62 and cathode wires 67 extend in order to make electrical connections to diagnostic or electrical devices (not shown). Electrical wires (for example, shown in FIGS. 6, 7, and 11) may extend through the proximal portion to each of the electrodes 43 of the epicardial pacing catheter 10.
  • FIG. 15(B) schematically illustrates an example embodiment of the proximal steering control means 153 integral to the control handle 150. The proximal steering control means 153 is controllably connected to the first proximal steering pull-wire 70 and second proximal steering pull-wire 71.
  • FIG. 15(C) schematically illustrates an example embodiment wherein the proximal steering control means 153 integral to the control handle 150 has been activated. As the proximal steering control means 153 is activated by a user, the first proximal steering pull-wire 70 becomes taught, and the second proximal steering pull-wire 71 loosens, creating slack 155. Both the first proximal steering pull-wire 70 and second proximal steering pull-wire 71 extend longitudinally through the control handle 150, into the epicardial pacing catheter 10, and are anchored at the proximal point of curvature 42. As the first steering pull-wire 70 becomes taught, the epicardial pacing catheter bends toward the proximal steering anchor and around the proximal point of curvature 42.
  • For example, the control handle may have channels for the steering pull wires and thumb wheel knobs for tightening or loosening the pull wires.
  • One skilled in the art can see that many other embodiments of means and methods for using the epicardial pacing catheter 10 of the epicardial pacing system according to the technique of the technology, and other details of construction and use thereof, constitute non-inventive variations of the novel and insightful conceptual means, system and technique which underlie the present invention.
  • The devices, systems, compositions, computer program products, and methods of various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents and which are hereby incorporated by reference herein in their entirety:
    • 1. U.S. Pat. No. 6,973,352 B1 to Tsutsui, D., et. al., entitled ā€œSteerable Cardiac Pacing and Sensing Catheter and Guidewire for Implanting Leadsā€, Dec. 6, 2005.
    • 2. U.S. Pat. No. 7,264,587 B2 to Chin, A., entitled ā€œEndoscopic Subxiphoid Surgical Proceduresā€, Sep. 4, 2007.
    • 3. U.S. Pat. No. 7,226,458 to Kaplan, et al., issued May 2007.
    • 4. U.S. Pat. No. 7,226,448 to Bertolero, et. al., issued May 2007.
    • 5. U.S. Pat. No. 7,142,919 to Hine, et al., issued May 2006.
    • 6. U.S. Pat. No. 7,130,699 to Huff, et al., issued October 2006.
    • 7. U.S. Pat. No. 7,120,504 to Osypka, issued October 2006.
    • 8. U.S. Pat. No. 7,101,362 to Vinne, issued September 2006.
    • 9. U.S. Pat. No. 7,090,637 to Danitz, et al., issued August 2006.
    • 10. U.S. Pat. No. 7,089,063 to Lesh, et al., issued August 2006.
    • 11. U.S. Pat. No. 7,059,878 to Hendrixson, issued August 2006.
    • 12. U.S. Pat. No. 7,041,099 to Thomas, et al., issued May 2006.
    • 13. U.S. Pat. No. 7,027,876 to Casavant, et al., issued April 2006.
    • 14. U.S. Pat. No. 7,008,418 to Hall, et al., issued March 2006.
    • 15. U.S. Pat. No. 6,973,352 to Tsutsui, et al., issued December 2005.
    • 16. U.S. Pat. No. 6,936,040 to Kramm, et al., issued August 2005.
    • 17. U.S. Pat. No. 6,921,295 to Sommer, et al., issued July 2005.
    • 18. U.S. Pat. No. 6,918,908 to Bonner, et al., issued August 2005.
    • 19. U.S. Pat. No. 6,899,710 to Hooven, issued May 2005.
    • 20. U.S. Pat. No. 6,876,885 to Swoyer, et al., issued May 2005.
    • 21. U.S. Pat. No. 6,868,291 to Bonner, et al., issued March 2005.
    • 22. U.S. Pat. No. 6,837,886 to Collins, et al., issued January 2005.
    • 23. U.S. Pat. No. 6,835,193 to Epstein, et al., issued December 2004.
    • 24. U.S. Pat. No. 6,527,767 to Wang, et al., issued March 2003.
    • 25. U.S. Pat. No. 6,314,963 to Vaska, et al., issued November 2001.
    • 26. U.S. Pat. No. 6,270,476 to Santoianni, et al., issued August 2001.
    • 27. U.S. Pat. No. 6,263,241 to Rosborough, et al., issued July 2001.
    • 28. U.S. Pat. No. 6,237,605 to Vaska, et al., issued May 2001.
    • 29. U.S. Pat. No. 6,123,084 to Jandak, et al., issued September 2000.
    • 30. U.S. Pat. No. 6,036,685 to Mueller, et al., issued March 2000.
    • 31. U.S. Pat. No. 5,733,280 to Avitall, issued March 1998.
    • 32. U.S. Pat. No. 5,213,570 to Van Deripe, et al., issued May 1993.
    • 33. U.S. Patent Application Publication No. 2007/0038052 to Swoyer, et al., issued February 2007.
    • 34. U.S. Patent Application Publication No. 2006/0270900 to Chin, et al., issued November 2006.
    • 35. U.S. Patent Application Publication No. 2006/0122591 to Keidar, issued June 2006.
    • 36. U.S. Patent Application Publication No. 2006/0025762 to Mohan, et al., February 2006.
    • 37. U.S. Patent Application Publication No. 20040267326 to Ocel, et al., issued December 2004.
    • 38. U.S. Patent Application Publication No. 2004/0138526 to Guenst, issued July 2004.
    • 39. U.S. Patent Application Publication No. 2004/0087831 to Michels, et al., issued May 2004.
    • 40. U.S. Patent Application Publication No. 2003/0069572 to Wellman, et al., issued April 2003.
    • 41. U.S. Patent Application Publication No. 2003/0065318 to Pendekanti, issued April 2003.
    • 42. U.S. Patent Application Publication No. 2003/0028187 to Vaska, et al., issued February 2003.
    • 43. International Patent Application Publication No. WO97/33526, issued September 1997.
    • 44. International Patent Application Publication No. WO95/15115, issued
    • June 1995.
    • 45. International Patent Application Publication No. WO93/20878, issued October 1993.
    • 46. International Patent Application Publication No. WO87/04081, issued July 1987. 47. M. Tomaske et al., ā€œDo Daily Threshold Trend Fluctuations of Epicardial Leads Correlate with Pacing and Sensing Characteristics in Paediatric Patients,ā€ Europace, doi:10.1093/europace/eum100, (2007).
    • 48. A. d'Avila et al., ā€œTransthoracic Epicardial Catheter Ablation of Ventricular Tachycardia,ā€ Heart Rhythmn, Vol. 3, pp. 1110-1111, (2006).
    • 49 E. Sosa et al., ā€œEpicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,ā€ Journal of Cardiovascular Electrophysiology, Vol. 16, pp. 449-452, (2005).
    • 50. S. Mahapatra et al., ā€œIncidence and Predictors of Cardiac Perforation after permanent Pacemaker Placement,ā€ Heart Rhythm, Vol. 2, pp. 907-911, (2005).
    • 51. D. L. Packer et al., ā€œMultimodality 3-D Ultrasound and Computed Tomographic Image Fusion: A Novel Basis for Catheter Navigation and Electroanatomic Mapping,ā€ Circulation, Vol. 112, p. U684, (2005).
    • 52. E. Sosa et al., ā€œNonsurgical Transthoracic Epicardial Approach in Patients with Ventricular Tachycardia and Previous Cardiac Surgery,ā€ Journal of Interventional Cardiac Electrophysiology, Vol. 10, pp. 281-288, (2004).
    • 53. J. Derose, Jr. et al., ā€œRobotically Assisted Left Ventricular Epicardial Lead Implantation for Biventricular Pacing: the Posterior Approach,ā€ Annals of Thoracic Surgery, Vol. 77, pp. 1472-1474, (2004).
    • 54. B. Hansky et al., ā€œLead Selection and Implantation Technique for Biventricular Pacing,ā€ European Heart Journal Supplements, Vol. 6, D112-D116, (2004).
    • 55. H. Mair et al., ā€œEpicardial Lead Implantation Techniques for Biventricular Pacing via Left Lateral Mini-Thoracotomy, Video-Assisted Thoracoscopy, and Robotic Approach, The Heart Surgery Forum, Vol. 6, #2003-4883, (2003).
    • 56. A. V. Sarabanda, et al., ā€œEfficacy and Safety of Circumferential Pulmonary Vein Isolation Using a Novel Cryothermal Balloon Ablation Systemā€ Journal of the American College of Cardiology, Vol. 46, pp. 1902-1912 (2005).
    • 57. S. Mahapatra et al., G. T. Gillies, ā€œAccess Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trialsā€, Technical Report UVA/640419/MAE08/102.
  • It should be appreciated that various sizes, dimensions, contours, rigidity, shapes, flexibility and materials of any of the embodiments discussed throughout may be varied and utilized as desired or required.
  • It should be appreciated that the catheter device and epicardial system and their related components discussed herein may can take on all shapes along the entire continual geometric spectrum of manipulation of x, y and z planes to provide and meet the anatomical and structural demands and requirements.
  • EXAMPLES AND EXPERIMENTAL RESULTS
  • Practice of the invention will be still more fully understood from the following examples and experimental results, which are presented herein for illustration only and should not be construed as limiting the invention in any way.
  • Example No. 1
  • Step 1ā€”Access and place a guidewire in the pericardial space using our EpiNeedle Access system.
  • Step 2ā€”Use a sheath, preferably our EpiSheath, or a general long 8 Fr sheath to place over the guidewire and maintain access.
  • Step 3ā€”Place the lead of the subject invention with handle though the sheath.
  • Step 4ā€”Guide the lead in the epicardial space using the two steering points and the sheath under fluoroscopic guidance (although this lead may be guided via one or more other imaging methods to include ICE, CT, MRI, Visual Endoscopy, or Echo Methods). The lead should be advanced along the border of the heart apically to base along the LV. Once it crosses the AV groove to the LA it should be deflected downward and advanced through the transverse sinus. Once across the transverse sinus it will need to be deflected up to the SVC and then down to the RA and finally the RV.
  • Step 5ā€”Slide the sheath back to the inferior portion of the RV.
  • Step 6ā€”At this point the handle should be hooked up to an EP analyzer. The lead should be clocked for a more anterior position or counter-clocked for a more posterior position until the largest LV signals are found. If multi-chamber pacing is sought one should pick a point when at least two poles of the LV, and of each other chamber, has an amplitude of at least 1 mV in the atrium and 5 mV in the ventricle. Note there is no need for all points to have high amplitudes. Next, the tabs should be deployed. This should push the lead more tightly against the heart and actually increase the voltage. Then, pacing should be attempted in the LV. If threshold is less than 2.5 V it is a good site on any pole. The same should then be done with the other points. If no point is good the tab should be let down and then the lead repositioned.
  • Step 7ā€”Once a good position is found the handle should be removed and the sheath withdrawn completely outside of the patient.
  • Step 8ā€”The lead should be plugged into either a custom ICD/BiV or attached to our wire interface for a standard ICD. The poles that are not used to pace should be plugged in this case. In the custom ICD, all poles would be active and the user (or an automated system) may decide when to pace.
  • Step 9ā€”The lead extender to the ICD would then either be tunneled back to the ICD in the shoulder (or elsewhere), placed by the nearby abdominal ICD. Or a battery-powered wireless box will be used to communicate with the main ICD in the shoulder. At this point the patient should be recovered. No stitch is needed for the lead access.
  • In summary, while the present invention has been described with respect to specific embodiments, many modifications, variations, alterations, substitutions, and equivalents will be apparent to those skilled in the art. The present invention is not to be limited in scope by the specific embodiment described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Accordingly, the invention is to be considered as limited only by the spirit and scope of the following claims, including all modifications and equivalents.
  • Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of this application. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim herein or of any application claiming priority hereto of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particularly interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein. Any information in any material (e.g., a United States/foreign patent, United States/foreign patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render invalid any claim herein or seeking priority hereto, then any such conflicting information in such incorporated by reference material is specifically not incorporated by reference herein.

Claims (134)

1. An epicardial pacing system, said system comprising:
an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface, said epicardial pacing catheter comprising:
a proximal portion, distal portion, and a longitudinal structure there between; and
at least one electrode in communication with the distal portion, wherein the at least one electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
2. The system of claim 1, wherein said disposing comprises a minimally invasive procedure.
3. The system of claim 1, wherein said disposing comprises a non-surgical procedure.
4. The system of claim 1, wherein said disposing comprises an interventional procedure.
5. The system of claim 1, wherein the middle mediastinum includes the pericardial space.
6. The system of claim 1, wherein said epicardial pacing catheter is a lead.
7. The system of claim 1, further comprising at least one electrical wire in communication with said at least one electrodes, said electrical wire extending longitudinally through said longitudinal structure toward the proximal end, wherein said at least one electrical wire is adapted for transmitting and receiving electrical energy.
8. The system of claim 7, further comprising a control means in communication with the proximal portion, wherein said control means is controllably connected to said at least one electrical wire.
9. The system of claim 8, wherein said control means is removable.
10. The system of claim 9, wherein said control means is a control handle.
11. The system of claim 1, wherein said at least one electrode comprises a conducting material.
12. The system of claim 11, wherein said conducting material comprises at least one of the following: copper, platinum, gold, silver, iridium and/or alloys thereof.
13. The system of claim 1, said catheter further comprising an insulating material, said insulating material in communication with said at least one electrode and a portion of said catheter located opposite the heart.
14. The system of claim 13, wherein said insulating material is non-conductive.
15. The system of claim 13, wherein said insulating material mitigates the transmission of electrical energy away from the heart.
16. The system of claim 1, said catheter further comprising a distal tip, wherein said distal tip comprises a non-conducting material.
17. The system of claim 1, wherein said at least one electrode is semi-cylindrical or arc-like in shape.
18. The system of claim 1, wherein the surface of said at least one electrode is roughened, profiled, or otherwise prepared so as to maximize surface area.
19. The system of claim 1, wherein said at least one electrode comprises at least one electrode pair.
20. The system of claim 19, wherein said at least one electrode pair comprises an anode and cathode.
21. The system of claim 1, wherein said at least one electrode is deployable.
22. The system of claim 1, wherein the cross section of said longitudinal structure comprises an oval, circle, ellipse, or semi-circular shape.
23. The system of claim 1, wherein at least a portion of said longitudinal structure comprises a biocompatible material.
24. The system of claim 1, wherein at least a portion of said longitudinal structure comprises a lubricious material having a low coefficient of friction.
25. The system of claim 1, wherein at least a portion of said longitudinal structure comprises at least one of the following: silicone, polyurethane, or Teflon, any combination thereof, or similarly lubricious material.
26. The system of claim 1, wherein at least a portion of said longitudinal structure is impregnated with sirilimus.
27. The system of claim 1, wherein at least a portion of said longitudinal structure comprises a drug eluting surface.
28. The system of claim 1, wherein said longitudinal structure is between about 15 and about 100 centimeters in length.
29. The system of claim 1, wherein said longitudinal structure is between about 2 and about 6 millimeters in diameter.
30. The system of claim 1, further comprising at least one distal fluid aperture located at the distal tip of said distal portion, said at least one distal fluid aperture in communication with a fluid lumen extending longitudinally through said longitudinal structure toward said proximal portion, wherein said at least one distal fluid aperture is adapted for passage of fluid.
31. The system of claim 30, wherein said passage comprises emitting fluid.
32. The system of claim 30, wherein said passage comprises extracting fluid.
33. The system of claim 30, wherein said passage comprises emitting and extracting fluid.
34. The system of claim 30, wherein said passage comprises emitting a drug or agent.
35. The system of claim 30, further comprising at least one proximal fluid aperture at said proximal portion, wherein the at least one proximal fluid aperture is in communication with said fluid lumen, and wherein the at least one proximal fluid aperture is adapted for passage of fluid.
36. The system of claim 35, wherein said passage comprises emitting fluid.
37. The system of claim 35, wherein said passage comprises extracting fluid.
38. The system of claim 35, wherein said passage comprises emitting and extracting fluid.
39. The system of claim 35, wherein said passage comprises emitting a drug or agent.
40. The system of claim 35, further comprising a fluid control means for controlling said fluid passage.
41. The system of claim 40, wherein said control means comprises a control handle in communication with said epicardial pacing catheter.
42. The system of claim 40, wherein said control means is in communication with an external fluid source.
43. The system of claim 40, wherein said control means is in communication with an external drug or agent source.
44. The system of claim 1, wherein said catheter further comprising a stabilization means for stabilizing said epicardial pacing catheter.
45. The system of claim 44, wherein said stabilization means comprises at least one deployable member.
46. The system of claim 45, wherein said deployable member comprises a screw, hook, or tab.
47. The system of claim 45, wherein said deployable member is in communication with said at least one electrode.
48. The system of claim 45, wherein said deployable member comprises a conductive material.
49. The system of claim 48, wherein said conducting material comprises at least one of the following: copper, platinum, gold, silver, or iridium, and/or alloys thereof.
50. The system of claim 45, further comprising a stabilizer actuator, wherein said stabilizer actuator deploys said at least one deployable member.
51. The system of claim 50, wherein said stabilizer actuator comprises:
at least one longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof.
52. The system of claim 51, wherein said at least one longitudinal member comprises at least one of the following: push-rod, pull-rod, wire, string, pole, thread, filament, cord, strand or rope.
53. The system of claim 50, wherein said stabilizer actuator comprises a micro electrical mechanical system (MEMS).
54. The system of claim 44, further comprising a control means for controlling said stabilization.
55. The system of claim 54, wherein said control means comprises a control handle.
56. The system of claim 45, wherein said at least one deployable member comprises a catheter-side surface and anatomical-side surface.
57. The system of claim 56, wherein said catheter-side surface comprises a rough surface and said anatomical-side surface comprises a lubricious surface.
58. The system of claim 56, wherein said at least one deployable member is adapted to engage proximate anatomical structures.
59. The system of claim 56, wherein said catheter-side and anatomical-side surfaces comprise non-conductive materials.
60. The system of claim 56, wherein said catheter-side surface comprises a material having a larger coefficient of friction than said anatomical-side surface.
61. The system of claim 56, wherein said at least one deployable member in a deployed state prevents or impedes said distal portion from slipping or moving.
62. The system of claim 56, wherein said distal portion can be moved around within the middle mediastinum when said stabilization means is in a non-deployed state.
63. The system of claim 56, wherein said anatomical-side surface comprises at least one of the following: silicone, polyurethane, or Teflon, combination thereof, or similarly lubricious material.
64. The system of claim 56, wherein said catheter-side surface comprises a textured surface to increase friction.
65. The system of claim 56, wherein said at least one deployable member comprises a radio-opaque material.
66. The system of claim 44, wherein said stabilization means comprises one or more protrusions for engaging proximal anatomical structures.
67. The system of claim 66, wherein at least one of said one or more protrusions is non-deployable.
68. The system of claim 66, wherein said one or more protrusions comprise a non-conducting material.
69. The system of claim 68, wherein said non-conducting material comprises at least one of the following: silicone, polyurethane, or Teflon, combination thereof, or similarly lubricious material.
70. The system of claim 68, wherein the non-conducting material comprises a radio-opaque material.
71. The system of claim 1, further comprising a steering means for positioning the epicardial pacing catheter.
72. The system of claim 71, further comprising a second steering means for steering said epicardial pacing catheter.
73. The system of claim 71, further comprising a third and fourth steering means for steering said epicardial pacing catheter.
74. The system of claim 71, wherein said steering means allows orientation of said epicardial pacing catheter about one point of curvature.
75. The system of claim 71, wherein said steering means allows orientation of said epicardial pacing lead about two or more points of curvature.
76. The system of claim 75, wherein the most proximal point of curvature is located about 15 cm from the proximal end.
77. The system of claim 75, wherein the most distal point of curvature is located between about 1 and about 20 cm from the distal end.
78. The system of claim 75, wherein the most distal point of curvature is a bidirectional center of curvature.
79. The system of claim 75, wherein the most distal point of curvature is greater than tri-directional.
80. The system of claim 71, wherein said steering means comprises at least one of the following: guide wire, pull string, digitating member or tensioning line.
81. The system of claim 71, wherein said steering means comprises a non-conductive material.
82. The system of claim 71, wherein said steering means comprises a material of high-tensile strength.
83. The system of claim 71, further comprising a control means for controlling said steering means.
84. The system of claim 83, wherein said control means comprises a removable handle in communication with the proximal portion.
85. The system of claim 1, wherein said epicardial pacing catheter is adapted to be in communication with a power supply.
86. The system of claim 85, wherein said epicardial pacing catheter is adapted to be in communication with a processor.
87. The system of claim 86, wherein said epicardial pacing catheter is adapted to be in communication with said power supply and said processor by hardwire, wireless, or a combination thereof.
88. The system of claim 87, wherein said wireless comprises BlueTooth, Infrared, other optical, photo-optical, or radio-based type of telemetry or communication.
89. The system of claim 85, further comprising an interface member in communication with said power supply and processor.
90. The system of claim 89, wherein said interface member is used by a patient, a physician, a technician, or a clinician.
91. The system of claim 90, wherein said interface member may be in remote or local communication with a control means.
92. The system of claim 91, wherein said control means comprises an external control handle.
93. The system of claim 1, wherein navigation of said epicardial pacing catheter is carried out through a puncture of the thorax.
94. The system of claim 93, wherein said puncture comprises a sub-xiphoid puncture.
95. The system of claim 93, wherein a pressure probe needle is used in navigating the epicardial pacing catheter.
96. The system of claim 95, wherein said pressure probe needle comprises an access needle.
97. The system of claim 95, wherein said pressure probe needle comprises a sensor for sensing pressure in the thorax.
98. The system of claim 1, further comprising an access needle, the access needle adapted to be inserted into the thorax.
99. The system of claim 98, further comprising a guidewire, wherein the guidewire is adapted to be inserted into said access needle.
100. The system of claim 98, wherein said guidewire and said access needle are navigated into the pericardial sack.
101. The system of claim 100, wherein said epicardial pacing catheter is adapted to be inserted into or around said guidewire.
102. The system of claim 1, wherein said epicardial pacing catheter is configured to be used with a sheath, said sheath comprising a distal portion, proximal portion, and a longitudinal structure there between, wherein said sheath is adapted for receiving said epicardial pacing catheter therein.
103. A method for use with an epicardial pacing catheter, said method comprising:
disposing said epicardial pacing catheter in the middle mediastinum of the thorax of a subject;
pacing the heart at one or more locations with electrical energy from an at least one electrode; and
at least partially insulating the electrical energy to allow pacing of the heart without damage to adjacent anatomical structures.
104. The method of claim 103, wherein said disposing comprises a minimally invasive procedure.
105. The method of claim 103, wherein said disposing comprises a non-surgical procedure.
106. The device of claim 103, wherein said disposing comprises an interventional procedure.
107. The method of claim 103, wherein said middle mediastinum includes the pericardial space.
108. The method of claim 103, wherein said at least one electrode may be used to stabilize said epicardial pacing catheter.
109. The method of claim 103, wherein said at least one electrode is deployed.
110. The method of claim 103, further comprising irrigating said middle mediastinum.
111. The method of claim 110, wherein said irrigating comprises emitting a fluid, drug, or agent.
112. The method of claim 110, wherein said irrigating comprises extracting a fluid, drug, or agent.
113. The method of claim 110, wherein said irrigating comprises both emitting and extracting a fluid, drug, or agent.
114. The method of claim 103, further comprising stabilizing said epicardial pacing catheter.
115. The method of claim 114, further comprising a at least one deployable member, wherein said deployable member is used for stabilizing.
116. The method of claim 115, wherein said at least one deployable member comprises a screw, hook, or tab.
117. The method of claim 115, wherein said at least one deployable member comprises a non-conductive material.
118. The method of claim 115, wherein said at least one deployable member comprises a conductive material.
119. The method of claim 118, wherein said at least one deployable member is in electrical communication with said at least one electrode.
120. The method of claim 103, further comprising steering said epicardial pacing catheter.
121. The method of claim 120, wherein said steering is about at least one point of curvature.
122. The method of claim 103, further comprising supplying power to said epicardial pacing catheter.
123. The method of claim 103, further comprising processing data received from said epicardial pacing catheter.
124. The method of claim 103, further comprising controlling said at least one electrode.
125. The method of claim 124, wherein said controlling comprises controllably connecting a control handle to said epicardial pacing catheter.
126. The method of claim 103, wherein said disposing is carried out through a puncture of the thorax.
127. The method of claim 126, wherein said puncture comprises a sub-xiphoid puncture.
128. The method of claim 126, wherein said disposing is carried out through a pressure probe needle.
129. The method of 128, wherein said pressure probe needle comprises an access needle.
130. The method of 128, wherein said pressure probe needle comprises a sensor for sensing pressure in the thorax.
131. The method of claim 103, further comprising inserting an access needle into the thorax of said subject.
132. The method of claim 131, further comprising inserting a guidewire into said access needle.
133. The method of claim 132, further comprising inserting a sheath over said guidewire.
134. The method of claim 133, further comprising inserting said epicardial pacing catheter into said sheath.
US12/741,710 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process Abandoned US20100241185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/741,710 US20100241185A1 (en) 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98678607P 2007-11-09 2007-11-09
US2372708P 2008-01-25 2008-01-25
US12/741,710 US20100241185A1 (en) 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process
PCT/US2008/082835 WO2009062061A1 (en) 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/082835 A-371-Of-International WO2009062061A1 (en) 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/960,137 Continuation US11951303B2 (en) 2018-04-23 Steerable epicardial pacing catheter system placed via the subxiphoid process

Publications (1)

Publication Number Publication Date
US20100241185A1 true US20100241185A1 (en) 2010-09-23

Family

ID=40626198

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/741,710 Abandoned US20100241185A1 (en) 2007-11-09 2008-11-07 Steerable epicardial pacing catheter system placed via the subxiphoid process

Country Status (2)

Country Link
US (1) US20100241185A1 (en)
WO (1) WO2009062061A1 (en)

Cited By (121)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224600A1 (en) * 2008-08-08 2011-09-15 Fabio Orlandi Irrigation and suction system, in particular for laparoscopic surgery
US8282565B2 (en) 2007-03-19 2012-10-09 University Of Virginia Patent Foundation Access needle pressure sensor device and method of use
WO2015143327A1 (en) * 2014-03-21 2015-09-24 Mayo Foundation For Medical Education And Research Multi-electrode epicardial pacing
US9211405B2 (en) 2007-03-22 2015-12-15 University Of Virginia Patent Foundation Electrode catheter for ablation purposes and related method thereof
US9218752B2 (en) 2010-02-18 2015-12-22 University Of Virginia Patent Foundation System, method, and computer program product for simulating epicardial electrophysiology procedures
US20160262600A1 (en) * 2013-12-26 2016-09-15 Olympus Corporation Pneumoperitoneum apparatus
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US9724170B2 (en) 2012-08-09 2017-08-08 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US9999465B2 (en) 2014-10-14 2018-06-19 Iowa Approach, Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
US10028682B2 (en) 2012-10-12 2018-07-24 University Of Virginia Patent Foundation Oxidation measurement system and related method thereof
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10159782B2 (en) 2012-09-19 2018-12-25 University Of Virginia Patent Foundation Method and system for enhanced imaging visualization of deep brain anatomy using infusion
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10166066B2 (en) 2007-03-13 2019-01-01 University Of Virginia Patent Foundation Epicardial ablation catheter and method of use
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10265502B2 (en) 2013-02-19 2019-04-23 Beth Israel Deaconess Medical Center, Inc. Adjustable stiffness catheter
US10322286B2 (en) 2016-01-05 2019-06-18 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10433906B2 (en) 2014-06-12 2019-10-08 Farapulse, Inc. Method and apparatus for rapid and selective transurethral tissue ablation
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10507302B2 (en) 2016-06-16 2019-12-17 Farapulse, Inc. Systems, apparatuses, and methods for guide wire delivery
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US10512505B2 (en) 2018-05-07 2019-12-24 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10517672B2 (en) 2014-01-06 2019-12-31 Farapulse, Inc. Apparatus and methods for renal denervation ablation
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US10624693B2 (en) 2014-06-12 2020-04-21 Farapulse, Inc. Method and apparatus for rapid and selective tissue ablation with cooling
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10661080B2 (en) 2016-04-01 2020-05-26 Kobara Medical Inc. Shaped epicardial lead and placement system and method
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10893905B2 (en) 2017-09-12 2021-01-19 Farapulse, Inc. Systems, apparatuses, and methods for ventricular focal ablation
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US11020180B2 (en) 2018-05-07 2021-06-01 Farapulse, Inc. Epicardial ablation catheter
US11033236B2 (en) 2018-05-07 2021-06-15 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11058354B2 (en) 2007-03-19 2021-07-13 University Of Virginia Patent Foundation Access needle with direct visualization and related methods
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11235161B2 (en) 2018-09-26 2022-02-01 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11235159B2 (en) 2018-03-23 2022-02-01 Medtronic, Inc. VFA cardiac resynchronization therapy
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11259869B2 (en) 2014-05-07 2022-03-01 Farapulse, Inc. Methods and apparatus for selective tissue ablation
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11400296B2 (en) 2018-03-23 2022-08-02 Medtronic, Inc. AV synchronous VfA cardiac therapy
US11433232B2 (en) 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11951303B2 (en) 2018-04-23 2024-04-09 University Of Virginia Patent Foundation Steerable epicardial pacing catheter system placed via the subxiphoid process

Families Citing this family (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US8906056B2 (en) 2009-05-01 2014-12-09 University Of Virginia Patent Foundation Access trocar and related method thereof
US8346373B2 (en) 2010-08-03 2013-01-01 Medtronic, Inc. Method and apparatus for delivering a lead to a heart
US9640198B2 (en) 2013-09-30 2017-05-02 Biosense Webster (Israel) Ltd. Controlling a system using voiceless alaryngeal speech

Citations (92)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3794026A (en) * 1970-07-29 1974-02-26 H Jacobs Ventilating apparatus embodying selective volume or pressure operation and catheter means for use therewith
US4280510A (en) * 1979-02-08 1981-07-28 Medtronic, Inc. Sutureless myocardial lead introducer
US4349023A (en) * 1980-10-09 1982-09-14 Abbott Laboratories Epidural needle catheter and adapter
US4607644A (en) * 1985-04-01 1986-08-26 Cordis Corporation Self-suturing porous epicardial electrode assembly
US4817634A (en) * 1987-06-18 1989-04-04 Medtronic, Inc. Epicardial patch electrode
US4935008A (en) * 1988-07-20 1990-06-19 Lewis Jr Ronald L Double lumen introducing needle
US4971070A (en) * 1987-06-18 1990-11-20 Medtronic, Inc. Epicardial patch electrode
US4991603A (en) * 1989-10-30 1991-02-12 Siemens-Pacesetter, Inc. Transvenously placed defibrillation leads via an inferior vena cava access site and method of use
US5033477A (en) * 1987-11-13 1991-07-23 Thomas J. Fogarty Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US5071428A (en) * 1989-09-08 1991-12-10 Ventritex, Inc. Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US5158097A (en) * 1990-06-08 1992-10-27 Allegheny-Singer Research Institute Paraneural stimulating lead
US5213570A (en) * 1990-12-14 1993-05-25 Mallinckrodt Medical, Inc. System and method for oxygenation of the pericardium
US5269326A (en) * 1991-10-24 1993-12-14 Georgetown University Method for transvenously accessing the pericardial space via the right auricle for medical procedures
US5300110A (en) * 1992-10-15 1994-04-05 Angeion Corporation Dirk-based epicardial defibrillation electrode
US5335313A (en) * 1991-12-03 1994-08-02 Douglas Terry L Voice-actuated, speaker-dependent control system for hospital bed
US5336252A (en) * 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5465711A (en) * 1991-05-29 1995-11-14 Origin Medsystems, Inc. Surgical procedures using endoscopic inflatable retraction devices
US5484423A (en) * 1990-11-05 1996-01-16 Te Me Na Logistics Needle, for example epidural needle
US5500012A (en) * 1992-07-15 1996-03-19 Angeion Corporation Ablation catheter system
US5509924A (en) * 1994-04-12 1996-04-23 Ventritex, Inc. Epicardial stimulation electrode with energy directing capability
US5544654A (en) * 1995-06-06 1996-08-13 Acuson Corporation Voice control of a medical ultrasound scanning machine
US5662647A (en) * 1991-07-22 1997-09-02 Transamerican Technologies International Electrode assembly for electrosurgical instrument
US5669882A (en) * 1996-04-23 1997-09-23 Pyles; Stephen Curved epidural needle system
US5702438A (en) * 1995-06-08 1997-12-30 Avitall; Boaz Expandable recording and ablation catheter system
US5725504A (en) * 1996-01-19 1998-03-10 Smiths Industries Public Limited Company Spinal epidural needle assemblies
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5779699A (en) * 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US5792217A (en) * 1996-06-28 1998-08-11 Medtronic, Inc. Temporary bipolar heart wire
US5797870A (en) * 1995-06-07 1998-08-25 Indiana University Foundation Pericardial delivery of therapeutic and diagnostic agents
US5800428A (en) * 1996-05-16 1998-09-01 Angeion Corporation Linear catheter ablation system
US5807249A (en) * 1996-02-16 1998-09-15 Medtronic, Inc. Reduced stiffness, bidirectionally deflecting catheter assembly
US5812978A (en) * 1996-12-09 1998-09-22 Tracer Round Associaties, Ltd. Wheelchair voice control apparatus
US5827216A (en) * 1995-06-07 1998-10-27 Cormedics Corp. Method and apparatus for accessing the pericardial space
US5843048A (en) * 1996-08-06 1998-12-01 The Kendall Company Epidural catheter needle
US5846239A (en) * 1996-04-12 1998-12-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using segmented porous electrode structures
US5885217A (en) * 1995-01-20 1999-03-23 Tyco Group S.A.R.L. Catheter introducer
US5916194A (en) * 1996-05-24 1999-06-29 Sarcos, Inc. Catheter/guide wire steering apparatus and method
US5928191A (en) * 1993-07-30 1999-07-27 E.P. Technologies, Inc. Variable curve electrophysiology catheter
US5931810A (en) * 1996-12-05 1999-08-03 Comedicus Incorporated Method for accessing the pericardial space
US5970457A (en) * 1995-10-25 1999-10-19 Johns Hopkins University Voice command and control medical care system
US5972013A (en) * 1997-09-19 1999-10-26 Comedicus Incorporated Direct pericardial access device with deflecting mechanism and method
US6032674A (en) * 1992-01-07 2000-03-07 Arthrocare Corporation Systems and methods for myocardial revascularization
US6036685A (en) * 1996-03-29 2000-03-14 Eclipse Surgical Technologies. Inc. Lateral- and posterior-aspect method for laser-assisted transmyocardial revascularization and other surgical applications
US6051008A (en) * 1996-12-02 2000-04-18 Angiotrax, Inc. Apparatus having stabilization members for percutaneously performing surgery and methods of use
US6123084A (en) * 1998-12-18 2000-09-26 Eclipse Surgical Technologies, Inc. Method for improving blood flow in the heart
US6148825A (en) * 1998-02-13 2000-11-21 Anderson; Bernard Bradley Method of using a dedicated internal shunt and stent for the inferior vena cava
US6156018A (en) * 1994-11-03 2000-12-05 Daig Corporation Guiding introducer system for use in medical procedures in the left ventricle
US6200315B1 (en) * 1997-12-18 2001-03-13 Medtronic, Inc. Left atrium ablation catheter
US6200303B1 (en) * 1997-04-30 2001-03-13 Beth Israel Deaconess Medical Center, Inc. Method and kit for transvenously accessing the pericardial space via the right atrium
US6206874B1 (en) * 1998-04-08 2001-03-27 Siemens-Elema Ab Apparatus and method for locating electrically active sites with an animal
US6206004B1 (en) * 1996-12-06 2001-03-27 Comedicus Incorporated Treatment method via the pericardial space
US6216704B1 (en) * 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6231518B1 (en) * 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US20010001214A1 (en) * 1994-03-10 2001-05-17 Bernstein Joseph B. Technique for producing interconnecting conductive links
US6237605B1 (en) * 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
US6263241B1 (en) * 1999-04-30 2001-07-17 Intermedics, Inc. Method and apparatus for treatment of cardiac electromechanical dissociation
US6266567B1 (en) * 1999-06-01 2001-07-24 Ball Semiconductor, Inc. Implantable epicardial electrode
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6270484B1 (en) * 1999-02-17 2001-08-07 Inbae Yoon Safety penetrating instrument with expandible portion and method of penetrating anatomical cavity
US6273877B1 (en) * 2000-07-20 2001-08-14 Becton, Dickinson And Company Epidural needle with secondary bevel
US20010020166A1 (en) * 1996-04-30 2001-09-06 Michael Daly System for simultaneous unipolar multi-electrode ablation
US20010025178A1 (en) * 1998-07-07 2001-09-27 Mulier Peter M.J. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6314963B1 (en) * 1996-10-22 2001-11-13 Epicor, Inc. Method of ablating tissue from an epicardial location
US6322536B1 (en) * 1998-03-06 2001-11-27 Cornell Research Foundation, Inc. Minimally invasive gene therapy delivery and method
US20010056280A1 (en) * 1992-01-07 2001-12-27 Underwood Ronald A. Systems and methods for electrosurgical spine surgery
US20020019626A1 (en) * 2000-02-25 2002-02-14 Sharkey Hugh R. Apparatus and method for accessing and performing a function within an intervertebral disc
US20020045895A1 (en) * 1996-10-22 2002-04-18 Epicor, Inc. Methods and devices for ablation
US20020055714A1 (en) * 1999-05-18 2002-05-09 Rothschild Richard B. Method and apparatus for the non-surgical placement of a subcutaneously tunnelled catheter through the skin into a central vein
US20020058925A1 (en) * 1999-09-16 2002-05-16 Kaplan Aaron V. Methods and apparatus for pericardial access
US20020072737A1 (en) * 2000-12-08 2002-06-13 Medtronic, Inc. System and method for placing a medical electrical lead
US20020077600A1 (en) * 2000-12-19 2002-06-20 Laksen Sirimanne Percutaneous catheter assembly
US20020082523A1 (en) * 2000-12-21 2002-06-27 Bryan Kinsella Steerable guidewire
US6416505B1 (en) * 1998-05-05 2002-07-09 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and pressure application probe for use with same
US20020161361A1 (en) * 1998-05-05 2002-10-31 Sherman Marshall L. RF ablation system and method having automatic temperature control
US6527767B2 (en) * 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US20030065318A1 (en) * 2001-09-28 2003-04-03 Rajesh Pendekanti Method and tool for epicardial ablation around pulmonary vein
US20030069572A1 (en) * 2001-09-28 2003-04-10 Wellman Parris S. Transmural ablation tool and method
US6551289B1 (en) * 1999-09-14 2003-04-22 Dr. Japan Co., Ltd. Outer needle of anesthetic needle assembly for epidural
US6579288B1 (en) * 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US20040068312A1 (en) * 2002-10-02 2004-04-08 Medtronic, Inc. Delivery of active fixation implatable lead systems
US6811544B2 (en) * 1999-05-11 2004-11-02 Alan K. Schaer Catheter positioning system
US20050096522A1 (en) * 2003-11-05 2005-05-05 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
US20060041243A1 (en) * 2001-01-13 2006-02-23 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20060106442A1 (en) * 2004-05-19 2006-05-18 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for treating cardiac pathologies
US20070043397A1 (en) * 2002-01-25 2007-02-22 Ocel Jon M Cardiac mapping instrument with shapeable electrode
US20090030469A1 (en) * 2005-08-11 2009-01-29 Gideon Meiry Cardiac Resynchronization Therapy Systems and Methods
US20100069849A1 (en) * 2006-06-30 2010-03-18 Kassab Ghassan S Percutaneous intravascular access to cardiac tissue
US20100211064A1 (en) * 2007-03-22 2010-08-19 University Of Virginia Patent Foundation Electrode Catheter for Ablation Purposes and Related Method Thereof
US8048072B2 (en) * 2006-07-12 2011-11-01 Les Hospitaux Universitaires de Geneva Medical device for tissue ablation
US8271095B2 (en) * 2005-09-26 2012-09-18 Biosense Webster, Inc. System and method for monitoring esophagus proximity

Patent Citations (100)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3794026A (en) * 1970-07-29 1974-02-26 H Jacobs Ventilating apparatus embodying selective volume or pressure operation and catheter means for use therewith
US4280510A (en) * 1979-02-08 1981-07-28 Medtronic, Inc. Sutureless myocardial lead introducer
US4349023A (en) * 1980-10-09 1982-09-14 Abbott Laboratories Epidural needle catheter and adapter
US4607644A (en) * 1985-04-01 1986-08-26 Cordis Corporation Self-suturing porous epicardial electrode assembly
US4817634A (en) * 1987-06-18 1989-04-04 Medtronic, Inc. Epicardial patch electrode
US4971070A (en) * 1987-06-18 1990-11-20 Medtronic, Inc. Epicardial patch electrode
US5033477A (en) * 1987-11-13 1991-07-23 Thomas J. Fogarty Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US4935008A (en) * 1988-07-20 1990-06-19 Lewis Jr Ronald L Double lumen introducing needle
US5071428A (en) * 1989-09-08 1991-12-10 Ventritex, Inc. Method and apparatus for providing intrapericardial access and inserting intrapericardial electrodes
US4991603A (en) * 1989-10-30 1991-02-12 Siemens-Pacesetter, Inc. Transvenously placed defibrillation leads via an inferior vena cava access site and method of use
US5158097A (en) * 1990-06-08 1992-10-27 Allegheny-Singer Research Institute Paraneural stimulating lead
US5484423A (en) * 1990-11-05 1996-01-16 Te Me Na Logistics Needle, for example epidural needle
US5213570A (en) * 1990-12-14 1993-05-25 Mallinckrodt Medical, Inc. System and method for oxygenation of the pericardium
US5465711A (en) * 1991-05-29 1995-11-14 Origin Medsystems, Inc. Surgical procedures using endoscopic inflatable retraction devices
US5662647A (en) * 1991-07-22 1997-09-02 Transamerican Technologies International Electrode assembly for electrosurgical instrument
US5269326A (en) * 1991-10-24 1993-12-14 Georgetown University Method for transvenously accessing the pericardial space via the right auricle for medical procedures
US5335313A (en) * 1991-12-03 1994-08-02 Douglas Terry L Voice-actuated, speaker-dependent control system for hospital bed
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US6032674A (en) * 1992-01-07 2000-03-07 Arthrocare Corporation Systems and methods for myocardial revascularization
US20010056280A1 (en) * 1992-01-07 2001-12-27 Underwood Ronald A. Systems and methods for electrosurgical spine surgery
US5336252A (en) * 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US5500012A (en) * 1992-07-15 1996-03-19 Angeion Corporation Ablation catheter system
US5300110A (en) * 1992-10-15 1994-04-05 Angeion Corporation Dirk-based epicardial defibrillation electrode
US5928191A (en) * 1993-07-30 1999-07-27 E.P. Technologies, Inc. Variable curve electrophysiology catheter
US20010001214A1 (en) * 1994-03-10 2001-05-17 Bernstein Joseph B. Technique for producing interconnecting conductive links
US5509924A (en) * 1994-04-12 1996-04-23 Ventritex, Inc. Epicardial stimulation electrode with energy directing capability
US6156018A (en) * 1994-11-03 2000-12-05 Daig Corporation Guiding introducer system for use in medical procedures in the left ventricle
US5885217A (en) * 1995-01-20 1999-03-23 Tyco Group S.A.R.L. Catheter introducer
US5544654A (en) * 1995-06-06 1996-08-13 Acuson Corporation Voice control of a medical ultrasound scanning machine
US6162195A (en) * 1995-06-07 2000-12-19 Cormedics Corp. Method and apparatus for accessing the pericardial space
US5797870A (en) * 1995-06-07 1998-08-25 Indiana University Foundation Pericardial delivery of therapeutic and diagnostic agents
US5827216A (en) * 1995-06-07 1998-10-27 Cormedics Corp. Method and apparatus for accessing the pericardial space
US5702438A (en) * 1995-06-08 1997-12-30 Avitall; Boaz Expandable recording and ablation catheter system
US6278975B1 (en) * 1995-10-25 2001-08-21 Johns Hopkins University Voice command and control medical care system
US5970457A (en) * 1995-10-25 1999-10-19 Johns Hopkins University Voice command and control medical care system
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5725504A (en) * 1996-01-19 1998-03-10 Smiths Industries Public Limited Company Spinal epidural needle assemblies
US5807249A (en) * 1996-02-16 1998-09-15 Medtronic, Inc. Reduced stiffness, bidirectionally deflecting catheter assembly
US5779699A (en) * 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US6036685A (en) * 1996-03-29 2000-03-14 Eclipse Surgical Technologies. Inc. Lateral- and posterior-aspect method for laser-assisted transmyocardial revascularization and other surgical applications
US5846239A (en) * 1996-04-12 1998-12-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using segmented porous electrode structures
US5669882A (en) * 1996-04-23 1997-09-23 Pyles; Stephen Curved epidural needle system
US20010020166A1 (en) * 1996-04-30 2001-09-06 Michael Daly System for simultaneous unipolar multi-electrode ablation
US5800428A (en) * 1996-05-16 1998-09-01 Angeion Corporation Linear catheter ablation system
US5916194A (en) * 1996-05-24 1999-06-29 Sarcos, Inc. Catheter/guide wire steering apparatus and method
US5792217A (en) * 1996-06-28 1998-08-11 Medtronic, Inc. Temporary bipolar heart wire
US5843048A (en) * 1996-08-06 1998-12-01 The Kendall Company Epidural catheter needle
US20020045895A1 (en) * 1996-10-22 2002-04-18 Epicor, Inc. Methods and devices for ablation
US6314963B1 (en) * 1996-10-22 2001-11-13 Epicor, Inc. Method of ablating tissue from an epicardial location
US20030028187A1 (en) * 1996-10-22 2003-02-06 Epicor, Inc. Device and method for forming a lesion
US6237605B1 (en) * 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
US6051008A (en) * 1996-12-02 2000-04-18 Angiotrax, Inc. Apparatus having stabilization members for percutaneously performing surgery and methods of use
US6156009A (en) * 1996-12-05 2000-12-05 Comedicus Incorporated Apparatus for accessing the pericardial space
US5931810A (en) * 1996-12-05 1999-08-03 Comedicus Incorporated Method for accessing the pericardial space
US6206004B1 (en) * 1996-12-06 2001-03-27 Comedicus Incorporated Treatment method via the pericardial space
US5812978A (en) * 1996-12-09 1998-09-22 Tracer Round Associaties, Ltd. Wheelchair voice control apparatus
US6200303B1 (en) * 1997-04-30 2001-03-13 Beth Israel Deaconess Medical Center, Inc. Method and kit for transvenously accessing the pericardial space via the right atrium
US20010039410A1 (en) * 1997-04-30 2001-11-08 Verrier Richard L. Kit for transvenously accessing the pericardial space via the right atrium
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6216704B1 (en) * 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5972013A (en) * 1997-09-19 1999-10-26 Comedicus Incorporated Direct pericardial access device with deflecting mechanism and method
US6579288B1 (en) * 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6200315B1 (en) * 1997-12-18 2001-03-13 Medtronic, Inc. Left atrium ablation catheter
US6325776B1 (en) * 1998-02-13 2001-12-04 Bernard Bradley Anderson Internal by-pass shunt apparatus for the inferior vena cava
US6148825A (en) * 1998-02-13 2000-11-21 Anderson; Bernard Bradley Method of using a dedicated internal shunt and stent for the inferior vena cava
US6322536B1 (en) * 1998-03-06 2001-11-27 Cornell Research Foundation, Inc. Minimally invasive gene therapy delivery and method
US6206874B1 (en) * 1998-04-08 2001-03-27 Siemens-Elema Ab Apparatus and method for locating electrically active sites with an animal
US6416505B1 (en) * 1998-05-05 2002-07-09 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and pressure application probe for use with same
US20020161361A1 (en) * 1998-05-05 2002-10-31 Sherman Marshall L. RF ablation system and method having automatic temperature control
US6527767B2 (en) * 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6231518B1 (en) * 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US20010025178A1 (en) * 1998-07-07 2001-09-27 Mulier Peter M.J. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6123084A (en) * 1998-12-18 2000-09-26 Eclipse Surgical Technologies, Inc. Method for improving blood flow in the heart
US6270484B1 (en) * 1999-02-17 2001-08-07 Inbae Yoon Safety penetrating instrument with expandible portion and method of penetrating anatomical cavity
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6263241B1 (en) * 1999-04-30 2001-07-17 Intermedics, Inc. Method and apparatus for treatment of cardiac electromechanical dissociation
US6811544B2 (en) * 1999-05-11 2004-11-02 Alan K. Schaer Catheter positioning system
US20020055714A1 (en) * 1999-05-18 2002-05-09 Rothschild Richard B. Method and apparatus for the non-surgical placement of a subcutaneously tunnelled catheter through the skin into a central vein
US6266567B1 (en) * 1999-06-01 2001-07-24 Ball Semiconductor, Inc. Implantable epicardial electrode
US6551289B1 (en) * 1999-09-14 2003-04-22 Dr. Japan Co., Ltd. Outer needle of anesthetic needle assembly for epidural
US20020058925A1 (en) * 1999-09-16 2002-05-16 Kaplan Aaron V. Methods and apparatus for pericardial access
US6423051B1 (en) * 1999-09-16 2002-07-23 Aaron V. Kaplan Methods and apparatus for pericardial access
US20020019626A1 (en) * 2000-02-25 2002-02-14 Sharkey Hugh R. Apparatus and method for accessing and performing a function within an intervertebral disc
US6273877B1 (en) * 2000-07-20 2001-08-14 Becton, Dickinson And Company Epidural needle with secondary bevel
US20020072737A1 (en) * 2000-12-08 2002-06-13 Medtronic, Inc. System and method for placing a medical electrical lead
US20020077600A1 (en) * 2000-12-19 2002-06-20 Laksen Sirimanne Percutaneous catheter assembly
US20020082523A1 (en) * 2000-12-21 2002-06-27 Bryan Kinsella Steerable guidewire
US6500130B2 (en) * 2000-12-21 2002-12-31 Scimed Life Systems, Inc. Steerable guidewire
US20060041243A1 (en) * 2001-01-13 2006-02-23 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20030065318A1 (en) * 2001-09-28 2003-04-03 Rajesh Pendekanti Method and tool for epicardial ablation around pulmonary vein
US20030069572A1 (en) * 2001-09-28 2003-04-10 Wellman Parris S. Transmural ablation tool and method
US20070043397A1 (en) * 2002-01-25 2007-02-22 Ocel Jon M Cardiac mapping instrument with shapeable electrode
US20040068312A1 (en) * 2002-10-02 2004-04-08 Medtronic, Inc. Delivery of active fixation implatable lead systems
US20050096522A1 (en) * 2003-11-05 2005-05-05 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
US20060106442A1 (en) * 2004-05-19 2006-05-18 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for treating cardiac pathologies
US20090030469A1 (en) * 2005-08-11 2009-01-29 Gideon Meiry Cardiac Resynchronization Therapy Systems and Methods
US8271095B2 (en) * 2005-09-26 2012-09-18 Biosense Webster, Inc. System and method for monitoring esophagus proximity
US20100069849A1 (en) * 2006-06-30 2010-03-18 Kassab Ghassan S Percutaneous intravascular access to cardiac tissue
US8048072B2 (en) * 2006-07-12 2011-11-01 Les Hospitaux Universitaires de Geneva Medical device for tissue ablation
US20100211064A1 (en) * 2007-03-22 2010-08-19 University Of Virginia Patent Foundation Electrode Catheter for Ablation Purposes and Related Method Thereof

Cited By (173)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10166066B2 (en) 2007-03-13 2019-01-01 University Of Virginia Patent Foundation Epicardial ablation catheter and method of use
US11937872B2 (en) 2007-03-13 2024-03-26 University Of Virginia Patent Foundation Epicardial ablation catheter and method of use
US10702335B2 (en) 2007-03-13 2020-07-07 University Of Virginia Patent Foundation Electrode catheter for ablation purposes and related method thereof
US8282565B2 (en) 2007-03-19 2012-10-09 University Of Virginia Patent Foundation Access needle pressure sensor device and method of use
US9314265B2 (en) 2007-03-19 2016-04-19 University Of Virginia Patent Foundation Access needle pressure sensor device and method of use
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US11058354B2 (en) 2007-03-19 2021-07-13 University Of Virginia Patent Foundation Access needle with direct visualization and related methods
US9211405B2 (en) 2007-03-22 2015-12-15 University Of Virginia Patent Foundation Electrode catheter for ablation purposes and related method thereof
US20110224600A1 (en) * 2008-08-08 2011-09-15 Fabio Orlandi Irrigation and suction system, in particular for laparoscopic surgery
US9314554B2 (en) * 2008-08-08 2016-04-19 Ab Medica Holding S.P.A. Irrigation and suction system, in particular for laparoscopic surgery
US11083381B2 (en) 2009-09-11 2021-08-10 University Of Virginia Patent Foundation Systems and methods for determining pressure frequency changes in a subject
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US9218752B2 (en) 2010-02-18 2015-12-22 University Of Virginia Patent Foundation System, method, and computer program product for simulating epicardial electrophysiology procedures
US9724170B2 (en) 2012-08-09 2017-08-08 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region
US11426573B2 (en) 2012-08-09 2022-08-30 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region
US9861802B2 (en) 2012-08-09 2018-01-09 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure
US10159782B2 (en) 2012-09-19 2018-12-25 University Of Virginia Patent Foundation Method and system for enhanced imaging visualization of deep brain anatomy using infusion
US10028682B2 (en) 2012-10-12 2018-07-24 University Of Virginia Patent Foundation Oxidation measurement system and related method thereof
US10369328B2 (en) 2013-02-19 2019-08-06 Beth Israel Deaconess Medical Center, Inc. Adjustable stiffness catheter
US10265502B2 (en) 2013-02-19 2019-04-23 Beth Israel Deaconess Medical Center, Inc. Adjustable stiffness catheter
US11344737B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US11524157B2 (en) 2013-05-06 2022-12-13 Medtronic, Inc. Substernal leadless electrical stimulation system
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US11857779B2 (en) 2013-05-06 2024-01-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10525272B2 (en) 2013-05-06 2020-01-07 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10668270B2 (en) 2013-05-06 2020-06-02 Medtronic, Inc. Substernal leadless electrical stimulation system
US11344720B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Substernal electrical stimulation system
US11433232B2 (en) 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US9861265B2 (en) * 2013-12-26 2018-01-09 Olympus Corporation Pneumoperitoneum apparatus
US20160262600A1 (en) * 2013-12-26 2016-09-15 Olympus Corporation Pneumoperitoneum apparatus
US11589919B2 (en) 2014-01-06 2023-02-28 Boston Scientific Scimed, Inc. Apparatus and methods for renal denervation ablation
US10517672B2 (en) 2014-01-06 2019-12-31 Farapulse, Inc. Apparatus and methods for renal denervation ablation
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
EP3119470A4 (en) * 2014-03-21 2018-02-28 Mayo Foundation for Medical Education and Research Multi-electrode epicardial pacing
US11020589B2 (en) 2014-03-21 2021-06-01 Mayo Foundation For Medical Education And Research Multi-electrode epicardial pacing
US10279170B2 (en) 2014-03-21 2019-05-07 Mayo Foundation For Medical Education And Research Multi-electrode epicardial pacing
WO2015143327A1 (en) * 2014-03-21 2015-09-24 Mayo Foundation For Medical Education And Research Multi-electrode epicardial pacing
US11259869B2 (en) 2014-05-07 2022-03-01 Farapulse, Inc. Methods and apparatus for selective tissue ablation
US10624693B2 (en) 2014-06-12 2020-04-21 Farapulse, Inc. Method and apparatus for rapid and selective tissue ablation with cooling
US11622803B2 (en) 2014-06-12 2023-04-11 Boston Scientific Scimed, Inc. Method and apparatus for rapid and selective tissue ablation with cooling
US10433906B2 (en) 2014-06-12 2019-10-08 Farapulse, Inc. Method and apparatus for rapid and selective transurethral tissue ablation
US11241282B2 (en) 2014-06-12 2022-02-08 Boston Scientific Scimed, Inc. Method and apparatus for rapid and selective transurethral tissue ablation
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US10835314B2 (en) 2014-10-14 2020-11-17 Farapulse, Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
US9999465B2 (en) 2014-10-14 2018-06-19 Iowa Approach, Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US11020595B2 (en) 2015-02-06 2021-06-01 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11224751B2 (en) 2015-02-06 2022-01-18 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10238882B2 (en) 2015-02-06 2019-03-26 Cardiac Pacemakers Systems and methods for treating cardiac arrhythmias
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US11020600B2 (en) 2015-02-09 2021-06-01 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US11476927B2 (en) 2015-03-18 2022-10-18 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10946202B2 (en) 2015-03-18 2021-03-16 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
US10709892B2 (en) 2015-08-27 2020-07-14 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10589101B2 (en) 2015-08-28 2020-03-17 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10933245B2 (en) 2015-12-17 2021-03-02 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10709891B2 (en) 2016-01-05 2020-07-14 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US11020179B2 (en) 2016-01-05 2021-06-01 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10433908B2 (en) 2016-01-05 2019-10-08 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10842561B2 (en) 2016-01-05 2020-11-24 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US11589921B2 (en) 2016-01-05 2023-02-28 Boston Scientific Scimed, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10512779B2 (en) 2016-01-05 2019-12-24 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10322286B2 (en) 2016-01-05 2019-06-18 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10661080B2 (en) 2016-04-01 2020-05-26 Kobara Medical Inc. Shaped epicardial lead and placement system and method
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10507302B2 (en) 2016-06-16 2019-12-17 Farapulse, Inc. Systems, apparatuses, and methods for guide wire delivery
US11497921B2 (en) 2016-06-27 2022-11-15 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US11464982B2 (en) 2016-08-24 2022-10-11 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US11305125B2 (en) 2016-10-27 2022-04-19 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US11590353B2 (en) 2017-01-26 2023-02-28 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US11357978B2 (en) 2017-04-27 2022-06-14 Boston Scientific Scimed, Inc. Systems, devices, and methods for signal generation
US10016232B1 (en) 2017-04-27 2018-07-10 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
US11833350B2 (en) 2017-04-28 2023-12-05 Boston Scientific Scimed, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10617467B2 (en) 2017-07-06 2020-04-14 Farapulse, Inc. Systems, devices, and methods for focal ablation
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US10893905B2 (en) 2017-09-12 2021-01-19 Farapulse, Inc. Systems, apparatuses, and methods for ventricular focal ablation
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
US11400296B2 (en) 2018-03-23 2022-08-02 Medtronic, Inc. AV synchronous VfA cardiac therapy
US11819699B2 (en) 2018-03-23 2023-11-21 Medtronic, Inc. VfA cardiac resynchronization therapy
US11235159B2 (en) 2018-03-23 2022-02-01 Medtronic, Inc. VFA cardiac resynchronization therapy
US11951303B2 (en) 2018-04-23 2024-04-09 University Of Virginia Patent Foundation Steerable epicardial pacing catheter system placed via the subxiphoid process
US10709502B2 (en) 2018-05-07 2020-07-14 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US11033236B2 (en) 2018-05-07 2021-06-15 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
US10512505B2 (en) 2018-05-07 2019-12-24 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US11020180B2 (en) 2018-05-07 2021-06-01 Farapulse, Inc. Epicardial ablation catheter
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US11235161B2 (en) 2018-09-26 2022-02-01 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11738200B2 (en) 2019-09-17 2023-08-29 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US10688305B1 (en) 2019-09-17 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11951313B2 (en) 2019-11-14 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US11684408B2 (en) 2019-11-20 2023-06-27 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11931090B2 (en) 2019-11-20 2024-03-19 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Also Published As

Publication number Publication date
US20180361145A1 (en) 2018-12-20
WO2009062061A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US20100241185A1 (en) Steerable epicardial pacing catheter system placed via the subxiphoid process
US11027119B2 (en) Systems and methods for implanting a medical device
US10702335B2 (en) Electrode catheter for ablation purposes and related method thereof
EP2291212B1 (en) Delivery catheter including side port and electrodes
US9597514B2 (en) Epicardial heart rhythm management devices, systems and methods
CA2699536C (en) Epicardial mapping and ablation catheter
CA2134904C (en) Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers
EP0745406B1 (en) Coronary sinus catheter
US7542807B2 (en) Conduction block verification probe and method of use
JP2018089431A (en) Catheters, catheter systems, and methods of piercing through tissue structure
WO2007073435A1 (en) Helical electrodes for intramyocardial pacing and sensing
US8315716B2 (en) Sheath and electrical lead
CA2160510A1 (en) Process for the treatment of atrial arrhythmia using a catheter guided by shaped guiding introducers
EP3052031A1 (en) Methods and devices for diastolic assist
US11951303B2 (en) Steerable epicardial pacing catheter system placed via the subxiphoid process
US20210077810A1 (en) Implanting a lead in the internal thoracic vasculature
US20220395324A1 (en) Method and device for intramyocardial infusion of conductive nanoparticles
US20040138651A1 (en) Pericardial maze procedure
WO2022264012A1 (en) Method and device for intrmyocardial infusion of conductive nanoparticles
JPH09173343A (en) Non-surgical mapping for atrial arrhythmia and induced introducer shaped for medical treatment
JP2004275786A (en) Non-surgical mapping for atrial arrhythmia and shaped guiding introducer for medical treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:024834/0274

Effective date: 20100810

Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAHAPATRA, SRIJOY;GILLIES, GEORGE T.;SIGNING DATES FROM 20100615 TO 20100802;REEL/FRAME:024834/0178

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION