US8719016B1 - Speech analytics system and system and method for determining structured speech - Google Patents

Speech analytics system and system and method for determining structured speech Download PDF

Info

Publication number
US8719016B1
US8719016B1 US12/755,549 US75554910A US8719016B1 US 8719016 B1 US8719016 B1 US 8719016B1 US 75554910 A US75554910 A US 75554910A US 8719016 B1 US8719016 B1 US 8719016B1
Authority
US
United States
Prior art keywords
speech
text
structured
type
scripts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/755,549
Inventor
Omer Ziv
Ran Achituv
Ido Shapira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verint Americas Inc
Verint Systems Inc
Original Assignee
Verint Americas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verint Americas Inc filed Critical Verint Americas Inc
Priority to US12/755,549 priority Critical patent/US8719016B1/en
Assigned to VERINT SYSTEMS LTD. reassignment VERINT SYSTEMS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACHITUV, RAN, SHAPIRA, IDO, ZIV, OMER
Priority to US14/270,280 priority patent/US9401145B1/en
Application granted granted Critical
Publication of US8719016B1 publication Critical patent/US8719016B1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN PATENT RIGHTS Assignors: VERINT AMERICAS INC.
Assigned to VERINT SYSTEMS INC. reassignment VERINT SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VERINT SYSTEMS LTD.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/183Speech classification or search using natural language modelling using context dependencies, e.g. language models
    • G10L15/19Grammatical context, e.g. disambiguation of the recognition hypotheses based on word sequence rules
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/183Speech classification or search using natural language modelling using context dependencies, e.g. language models
    • G10L15/19Grammatical context, e.g. disambiguation of the recognition hypotheses based on word sequence rules
    • G10L15/197Probabilistic grammars, e.g. word n-grams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems

Definitions

  • Conversations within contact centers are typically more structured than everyday speech.
  • the contact center conversations may contain a mixture of free conversation and structured speech.
  • Structured speech is sequences that have a higher repetition rate than free speech.
  • Structured speech may include scripts that are read word-for-word by agents, computer generated voice mail messages, interactive voice response (IVR) generated speech, and figures of speech.
  • a method for determining structured speech may include receiving a transcript of an audio recording created by a text-to-speech communication processing system. Thereafter, analyzing text in the transcript to determine repetitions within the text, where the repetitions being indicative of structured speech. From the repetitions, a duration distribution of the repetitions may be determined to ascertain a first type of structured speech.
  • the first type of structured speech many be interactive voice response (IVR) generated speech.
  • a length of the repetitions may be determined to ascertain a second type of structured speech.
  • the second type of structured speech may be scripts spoken by, e.g., agents in the contact center.
  • a method for converting speech to text in a speech analytics system may include receiving audio data containing speech made up of sounds from an audio source, processing the sounds with a phonetic module resulting in symbols corresponding to the sounds, and processing the symbols with a language module and occurrence table resulting in text.
  • the method also may include determining a probability of correct translation for each word in the text, comparing the probability of correct translation for each word in the text to the occurrence table, and adjusting the occurrence table based on the probability of correct translation for each word in the text.
  • FIG. 1 illustrates a speech to text translation system
  • FIG. 2 illustrates a method for translating speech to text in a speech analytics system
  • FIG. 3 illustrates a method of determining a type of speech in accordance with a structure
  • FIGS. 4A and 4B illustrate graphical representations of deviations from a particular sentence
  • FIG. 5 illustrates a relationship of a number of mistakes to a percentage with respect identifying a sentence as being a script
  • FIG. 6 illustrates the communication processing system of FIG. 1 in greater detail.
  • Structured speech has a different statistical behavior than free conversation.
  • structured speech may be automatically identified based in Large-Vocabulary Continuous Speech Recognition (LVCSR) outputs from contact centers, given a set of transcribed calls.
  • LVCSR Large-Vocabulary Continuous Speech Recognition
  • a different retrieval criterion may be used for structured speech than free conversation.
  • FIG. 1 is a block diagram illustrating a speech analytics system 100 .
  • Speech analytics system 100 includes audio source 102 , audio source 104 , communication network 106 , communication processing system 108 , recorder 109 and database 110 .
  • Audio source 102 exchanges data with communication network 106 through link 114
  • audio source 104 exchanges data with communication network 106 through link 116 .
  • Communication processing system 108 exchanges data with communication network 106 through link 118 , with database 110 through link 120 , and with recorder 109 through link 122 .
  • Recorder 109 may also communicate with the network 106 over link 124 .
  • Links 110 , 114 , 116 , 118 , 120 , 122 and 124 may use any of a variety of communication media, such as air, metal, optical fiber, or any other signal propagation path, including combinations thereof.
  • links 110 , 114 , 116 , 118 , 120 , 122 and 124 may use any of a variety of communication protocols, such as internet, telephony, optical networking, wireless communication, wireless fidelity, or any other communication protocols and formats, including combinations thereof.
  • links 110 , 114 , 116 , 118 , 120 , 122 and 124 could be direct links or they might include various intermediate components, systems, and networks.
  • Communication network 106 may be any type of network such as a local area network (LAN), wide area network (WAN), the internet, a wireless communication network, or the like. Any network capable of transferring data from one device to another device may operate as communication network 106 .
  • LAN local area network
  • WAN wide area network
  • Wi-Fi Wireless Fidelity
  • the speech analytics system 100 may include recorder 109 that stores the speech from audio source 102 or audio source 104 for later retrieval by communication processing system 108 or other downstream devices or systems.
  • the audio sources 102 and 104 may be any source, such as a telephone, VoIP endpoint, mobile device, general purpose computing device, etc.
  • the recorded speech is made up of a plurality of sounds that are then translated to text.
  • Communication processing system 108 may be any device capable of receiving data through communication network 106 from other devices, such as audio sources 102 and 104 , processing the data, and transmitting data through network 106 to other devices.
  • communication processing system 108 may include a processing system for processing data, a communication interface for receiving and transmitting data, a storage system for storing data, and a user interface.
  • One example embodiment of communication processing system 108 is represented by the communication processing system 108 illustrated in FIG. 6 and described in detail below.
  • Communications processing system 108 receives speech made up of sounds from audio source 102 , audio source 104 or recorder 109 , and proceeds to convert the speech to text. First, communication processing system 108 uses a phonetic module to convert the sounds into symbols corresponding to the sounds. Next, communication processing system 108 uses a language module and occurrence table to convert the symbols into text. In addition, communication processing system 108 determines a probable accuracy for each word translated. This probability may be based upon the words proceeding or following the selected word. Finally, communication processing system 108 compares the probable accuracies for each word translated with an occurrence table and adjusts the occurrence table as indicated by the probable accuracies for each word.
  • the occurrence table may be based upon the occurrence of words in a test sample.
  • test samples and occurrence tables corresponding to different dialects, languages, or regional slang.
  • test samples and occurrence tables corresponding to different domains such as banking, law, commerce, phone centers, technical support lines, or the like.
  • speech of a known dialect or domain is received, it is compared to a corresponding occurrence table, and the appropriate occurrence table is updated based upon the probable accuracy of the translation of the speech.
  • the occurrence table for different dialects and domains are continually being updated as more speech is translated.
  • FIG. 1 illustrates communication processing system 108 as a single device
  • other embodiments may perform the functions of communication processing system 108 in a plurality of devices distributed throughout communication network 108 .
  • separate devices may be provided for each different method of speech to text translation, and their resulting transcriptions may then be transmitted to communication processing system 108 for compilation into database 110 and for generation of a database index.
  • Still other examples may provide for translation of the audio data to text within communication processing system 108 , while the function of creating the database index may actually be performed within database 110 .
  • FIG. 1 is simply representative of one possible structure for performing the methods described here for indexing a database.
  • communication processing system 108 receives audio data from audio sources 102 and 104 through communication network 106 .
  • This audio data may utilize any of a wide variety of formats.
  • the audio data may be recorded as .mp3 or .wav files or the like. Further, the audio data may include one or more conversations within a single data file or group of data files.
  • the audio data may be translated from speech to text by other elements (not shown) within communication network 106 , and the translated text may then be provided to communication processing system 108 .
  • Communication processing system 108 processes audio data received from audio sources 102 and 104 , producing an index of symbols found within the audio data. These symbols may include phonemes, words, phrases, or the like. The index of symbols may be stored in database 110 in some embodiments. Communication processing system 108 then processes the index of symbols searching for symbols that have a deviation in frequency of occurrence within a time period. This time period may be of any length. For example, communication processing system 108 may receive daily updates of audio data and search for symbols having a deviation in frequency of occurrence in comparison to the audio data received for the previous week. Other embodiments may use other periods of time in a similar method.
  • FIG. 2 illustrates a method of performing speech to text translation in a speech analytics system 106 .
  • Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 200 ).
  • Speech analytics system 106 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 202 ).
  • Speech analytics system 106 then processes the symbols using a language module and occurrence table producing text (operation 204 ).
  • Speech analytics system 106 determines a probability of correct translation for each word in the text (operation 206 ). This probability may be based in part or in whole on the words proceeding or following the selected word. Speech analytics system 106 compares the probability of correct translation for each word in the text to an appropriate occurrence table (operation 208 ). This occurrence table may be selected based upon a number of factors such as dialect or language of the speech, and the domain in which the speech was obtained.
  • Speech analytics system 106 modifies the occurrence table based on the probability of correct translation for each word in the text (operation 210 ). This modification may simply change the occurrence probability by a fixed percentage, or by a variable percentage based on the probability of correct translation of the given word, or any other of a wide variety of methods for modification.
  • FIG. 2 illustrates a method of performing speech to text translation in a speech analytics system 106 .
  • Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 200 ).
  • Speech analytics system 106 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 202 ).
  • Speech analytics system 106 then processes the symbols using a language module and occurrence table producing text (operation 204 ).
  • Speech analytics system 106 determines a probability of correct translation for each word in the text (operation 206 ). This probability may be based in part or in whole on the words proceeding or following the selected word. Speech analytics system 106 compares the probability of correct translation for each word in the text to an appropriate occurrence table (operation 208 ). This occurrence table may be selected based upon a number of factors such as dialect or language of the speech, and the domain in which the speech was obtained.
  • Speech analytics system 106 modifies the occurrence table based on the probability of correct translation for each word in the text (operation 210 ). This modification may simply change the occurrence probability by a fixed percentage, or by a variable percentage based on the probability of correct translation of the given word, or any other of a wide variety of methods for modification.
  • structured speech may be identified.
  • Structure speech may include IVR, scripts, and figures of speech.
  • IVR this type of structured speech is repetitive.
  • the communication processing system 108 can recognizing errors in a transcription by taking advantage of the repetitive nature of IVR speech.
  • An IVR message may be, “Welcome to ABC Products customer service center. All of our representatives are busy assisting other customers.”
  • a voicemail system prompt may be, “You have reached the voice mail box of Jane Doe, please leave your message after the tone.”
  • Scripts are another type of structured speech, and are typically statements spoken by agents are, as required by law, certain situations (e.g., disclaimers), and in response to customer inquiries, etc.
  • the scripts are spoken by many different agents with typically only minor modification and timing between the agents.
  • An agent script may be, for example, “For security purposes can you please verify the last four digits of your social security number.” Scripts may have medium length sentences, but are repeated among conversations in the contact center.
  • Figures of speech are small to medium-sized sentences that people tend to say even thought they are not written text read aloud.
  • the figures of speech are typically common phrases, such as “Oh, my!” They occur with some repetition, but are typically shorter than scripts. Similar to a script, figures of speech tend to have some repetition among conversations in the contact center, but are typically shorter in length and of lower frequency.
  • Free speech typically does not repeat among conversations.
  • An example of free speech is, “Well, you see, first click on start.”
  • the communication processing system 108 can make determinations of the type of speech by looking words within the transcript. For example, for IVR speech, if a predetermined number or percentage of words in an IVR recording are recognized (e.g., 9 out of 16), the communication processing system 108 can make a determination that a particular segment of the transcript is IVR speech. The communication processing system 108 may make a determination not to index each and every word of the recognized IVR speech.
  • FIG. 3 illustrates a method of determining a type of speech in accordance with a structure.
  • Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 300 ).
  • Communication processing system 108 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 302 ).
  • Communication processing system 108 then processes the symbols using a language module and occurrence table producing text (operation 304 ).
  • the communication processing system 108 can make analyze the text of the transcribed speech to make determinations of the type of speech (operation 306 ) by looking words within the transcript. For example, the communication processing system 108 may identify structured speech based upon repetitions. The communication processing system 108 may identify IVR speech based on durations and distributions. For example, FIG. 4A illustrates patterns of IVR speech. When a certain sentence, phrase, statement, etc. repeats over and over, it can be identified. As illustrated, phrases associated with IVR speech show little deviation. However, scripts spoken by agents may exhibit a higher degree of deviation, as shown in FIG. 4B . Thus, the two types of structured speech can be identified and separated.
  • the communication processing system 108 may make a determination (operation 308 ) that a particular segment of the transcript is IVR speech based on the duration distribution of the particular segment. As such, the IVR speech can be separated (operation 310 ). For example, the segment, “All of our representatives are busy assisting other customers” can be identified as IVR speech.
  • the communication processing system 108 may determine if a predetermined number of words in an IVR recording are recognized. In accordance with the determination, the communication processing system 108 may make a determination not to index each and every word of the recognized IVR speech.
  • scripts spoken by agents can be identified by, e.g., examining a length of the phrase.
  • scripts are read from text or are statements that agents are trained to say, (“A Federal Law and your decision will not affect your service”).
  • figures of speech are customary statement (“Hello, how can I help you?”). Because figures of speech tend to be a few words, whereas the scripts tend to be longer sentences, a phrase can be categorized as a script (operation 312 ) or a figure of speech (operation 314 ). Thus, figures of speech can be separated out from scripts based on length.
  • Those phrases that do not fall into the above structures are likely to be free speech (operation 316 ). Separating the structures may be useful, because for example, in scripts, the word “rebate” may have a different meaning than when it occurs in a figure of speech or free speech. Thus, as will be described below, when searching on the word “rebate,” a context (script, figure of speech, or free speech) may be included in the index and searched.
  • agent compliance may be determined. For example, it may be determined which agents do or do not strictly adhere to scripts that include, e.g., disclaimers. Contacts may be reviewed that should include a script, but do not. Agents may be ranked based on their compliance to scripts. In addition, identifying scripts may be used to determine which agents are more or less polite that others. Politeness may be analyzed to determine if agents who are more polite helping with customer retention, sales, etc. Yet further, identifying scripts may determine if agents are attempting to up-sell, and what the characteristics of the calls are in which up-selling is performed.
  • scores for a script can be determined by setting a minimum distance between the script and words in the contact.
  • a script may be identified by looking for a word or group of words, a Boolean expression or weighting of words. Pattern matching may be performed if a number of errors are small. However, there is not a need to search each and every word in script for it to be correct. In some implementations, an order of the words may be used.
  • a threshold number of mistakes may be set, e.g., 18 to identify a percentage of sentences as being the script.
  • a higher recall and precision may be obtained because the script itself has a more accurate signature that looking for the each word by itself.
  • the sequence and/or timing of the words can be used.
  • scripts may be used as categories.
  • the communication processing system 108 may identify the scripts and output a list.
  • the communication processing system 108 may evaluate each contact for the scripts it contains (e.g., binary output).
  • a user may use a “Script Definition Tool” (SDT) to assign a script with a name, color, impact, etc.
  • SDT Script Definition Tool
  • the user may assign the script with a type, such as a greeting, authentication, hold, transfer or closure. Additional types assigned can be legal, company policy, up-sale, politeness etc.
  • Manual edit of scripts may be performed by the user who may edit the scripts list to focus on interesting scripts and perform “fine tuning.” Each script can be given a name, color, impact similarly to categories.
  • the communication processing system 108 may utilize scripts similarly to categories. For example, scripts may be used as a filter in a query. Since the script is binary, a “NOT” operator can be used for checking compliance. Scripts may be displayed, and impact and relevance determined for a specific query. In a player application, scripts may be marked within a contact (see, e.g., FIG. 5A ).
  • scripts may be identified as part of a quality management and scorecards.
  • a supervisor may obtain a list of sentences that each of his/her agents tends to use. The supervisor may ascertain the greetings/closure each agent uses. The supervisor may determine an agents first call resolution capabilities.
  • Scripts may be exported to database 110 .
  • the scripts can be integrated with evaluation forms (QM) and Scorecards.
  • QM evaluation forms
  • Scorecards Scripts compliance can be used in QM as metrics for evaluations, and for training purposes.
  • Script adherence reports may be generated to determine which agents exceptionally use certain scripts. The reports may also surface scripts that have exceptionally low or high compliance. For each agent, a graph of his/her compliance to various scripts may be generated, as well as an overall scripts compliance graph for all scripts.
  • analytics may be performed to determine how the usage of an up-sale script contribute to sales (e.g., using meta data); whether agent politeness leads to better customer satisfaction (e.g., using categories); and whether a polite agent helps improve customer retention; whether complying to company policy has a positive effect on sales.
  • Analytics may determine other aspects, such as what characterizes a specific agent group and what their common scripts are. In addition, it may be determined what characterizes good agents; and what are their common scripts (e.g., using QM data).
  • FIG. 6 illustrates the communication processing system of FIG. 1 in greater detail.
  • the communication processing system 108 may include communication interface 301 , user interface 302 , and processing system 303 .
  • Processing system 303 is linked to communication interface 301 and user interface 302 .
  • Processing system 303 includes processing circuitry 305 and memory device 306 that stores operating software 307 .
  • Communication interface 301 includes components that communicate over communication links, such as network cards, ports, RF transceivers, processing circuitry and software, or some other communication devices. Communication interface 301 may be configured to communicate over metallic, wireless, or optical links. Communication interface 301 may be configured to use TDM, IP, Ethernet, optical networking, wireless protocols, communication signaling, or some other communication format—including combinations thereof. In this example, communication interface 301 is configured to receive audio data from recorder 104 or directly from audio source 102 .
  • User interface 302 includes components that interact with a user.
  • User interface 302 may include a keyboard, display screen, mouse, touch pad, or some other user input/output apparatus.
  • User interface 302 may be omitted in some examples.
  • Processing circuitry 305 includes microprocessor and other circuitry that retrieves and executes operating software 307 from memory device 306 .
  • Memory device 306 includes a disk drive, flash drive, data storage circuitry, or some other memory apparatus.
  • Operating software 307 includes computer programs, firmware, or some other form of machine-readable processing instructions. Operating software 307 may include an operating system, utilities, drivers, network interfaces, applications, or some other type of software. When executed by circuitry 305 , operating software 307 directs processing system 303 to operate communication processing system 108 as described herein.
  • operating software 307 includes a phonetic module that directs processing circuitry 305 to translate speech to sounds, a language module that directs processing circuitry 305 to translate sounds to text, and an occurrence table that is used with the language module to improve the accuracy of the sounds to text translation.

Abstract

A method for converting speech to text in a speech analytics system is provided. The method includes receiving audio data containing speech made up of sounds from an audio source, processing the sounds with a phonetic module resulting in symbols corresponding to the sounds, and processing the symbols with a language module and occurrence table resulting in text. The method also includes determining a probability of correct translation for each word in the text, comparing the probability of correct translation for each word in the text to the occurrence table, and adjusting the occurrence table based on the probability of correct translation for each word in the text.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/167,495, and entitled “STRUCTURED SPEECH”, filed on Apr. 7, 2009, and Application Ser. No. 61/178,795, and entitled “SPEECH ANALYTICS SYSTEM”, filed on May 15, 2009, the contents of which are hereby incorporated by reference in their entirety.
BACKGROUND
Conversations within contact centers are typically more structured than everyday speech. The contact center conversations may contain a mixture of free conversation and structured speech. Structured speech is sequences that have a higher repetition rate than free speech. Structured speech may include scripts that are read word-for-word by agents, computer generated voice mail messages, interactive voice response (IVR) generated speech, and figures of speech.
Accuracy is also a concern when translating speech to text to generate transcripts of conversations in the contact center. When performing speech to text there are often errors in the conversion. This may be cause by noise on the line, speakers do not speak clearly, or transcription system itself has errors. In long texts, the probability of errors increases. Thus, it is difficult to determine agent compliance to scripts and to verify quality assurance.
SUMMARY
In accordance with some implementations described herein, there is provided a method for determining structured speech. The method may include receiving a transcript of an audio recording created by a text-to-speech communication processing system. Thereafter, analyzing text in the transcript to determine repetitions within the text, where the repetitions being indicative of structured speech. From the repetitions, a duration distribution of the repetitions may be determined to ascertain a first type of structured speech. The first type of structured speech many be interactive voice response (IVR) generated speech. A length of the repetitions may be determined to ascertain a second type of structured speech. The second type of structured speech may be scripts spoken by, e.g., agents in the contact center.
In accordance with some implementations, there is provided a method for converting speech to text in a speech analytics system. The method may include receiving audio data containing speech made up of sounds from an audio source, processing the sounds with a phonetic module resulting in symbols corresponding to the sounds, and processing the symbols with a language module and occurrence table resulting in text. The method also may include determining a probability of correct translation for each word in the text, comparing the probability of correct translation for each word in the text to the occurrence table, and adjusting the occurrence table based on the probability of correct translation for each word in the text.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing summary, as well as the following detailed description of illustrative implementations, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the implementations, there are shown in the drawings example constructions; however, the implementations are not limited to the specific methods and instrumentalities disclosed. In the drawings:
FIG. 1 illustrates a speech to text translation system;
FIG. 2 illustrates a method for translating speech to text in a speech analytics system;
FIG. 3 illustrates a method of determining a type of speech in accordance with a structure;
FIGS. 4A and 4B illustrate graphical representations of deviations from a particular sentence;
FIG. 5 illustrates a relationship of a number of mistakes to a percentage with respect identifying a sentence as being a script; and
FIG. 6 illustrates the communication processing system of FIG. 1 in greater detail.
DETAILED DESCRIPTION
The following description and associated drawings teach the best mode of the invention. For the purpose of teaching inventive principles, some conventional aspects of the best mode may be simplified or omitted. The following claims specify the scope of the invention. Some aspects of the best mode may not fall within the scope of the invention as specified by the claims. Thus, those skilled in the art will appreciate variations from the best mode that fall within the scope of the invention. Those skilled in the art will appreciate that the features described below can be combined in various ways to form multiple variations of the invention. As a result, the invention is not limited to the specific examples described below, but only by claims and their equivalents.
Structured speech has a different statistical behavior than free conversation. By understanding the statistical distinction, structured speech may be automatically identified based in Large-Vocabulary Continuous Speech Recognition (LVCSR) outputs from contact centers, given a set of transcribed calls. For example, a different retrieval criterion may be used for structured speech than free conversation. By exploiting the fact that structured speech includes long sentences, a high level of precision and recall may be obtained, in view of the following.
FIG. 1 is a block diagram illustrating a speech analytics system 100. Speech analytics system 100 includes audio source 102, audio source 104, communication network 106, communication processing system 108, recorder 109 and database 110. Audio source 102 exchanges data with communication network 106 through link 114, while audio source 104 exchanges data with communication network 106 through link 116. Communication processing system 108 exchanges data with communication network 106 through link 118, with database 110 through link 120, and with recorder 109 through link 122. Recorder 109 may also communicate with the network 106 over link 124.
Links 110, 114, 116, 118, 120, 122 and 124 may use any of a variety of communication media, such as air, metal, optical fiber, or any other signal propagation path, including combinations thereof. In addition, links 110, 114, 116, 118, 120, 122 and 124 may use any of a variety of communication protocols, such as internet, telephony, optical networking, wireless communication, wireless fidelity, or any other communication protocols and formats, including combinations thereof. Further, links 110, 114, 116, 118, 120, 122 and 124 could be direct links or they might include various intermediate components, systems, and networks.
Communication network 106 may be any type of network such as a local area network (LAN), wide area network (WAN), the internet, a wireless communication network, or the like. Any network capable of transferring data from one device to another device may operate as communication network 106.
The speech analytics system 100 may include recorder 109 that stores the speech from audio source 102 or audio source 104 for later retrieval by communication processing system 108 or other downstream devices or systems. The audio sources 102 and 104 may be any source, such as a telephone, VoIP endpoint, mobile device, general purpose computing device, etc. The recorded speech is made up of a plurality of sounds that are then translated to text.
Communication processing system 108 may be any device capable of receiving data through communication network 106 from other devices, such as audio sources 102 and 104, processing the data, and transmitting data through network 106 to other devices. For example, communication processing system 108 may include a processing system for processing data, a communication interface for receiving and transmitting data, a storage system for storing data, and a user interface. One example embodiment of communication processing system 108 is represented by the communication processing system 108 illustrated in FIG. 6 and described in detail below.
Communications processing system 108 receives speech made up of sounds from audio source 102, audio source 104 or recorder 109, and proceeds to convert the speech to text. First, communication processing system 108 uses a phonetic module to convert the sounds into symbols corresponding to the sounds. Next, communication processing system 108 uses a language module and occurrence table to convert the symbols into text. In addition, communication processing system 108 determines a probable accuracy for each word translated. This probability may be based upon the words proceeding or following the selected word. Finally, communication processing system 108 compares the probable accuracies for each word translated with an occurrence table and adjusts the occurrence table as indicated by the probable accuracies for each word.
In an example, the occurrence table may be based upon the occurrence of words in a test sample. There may be a variety of test samples and occurrence tables corresponding to different dialects, languages, or regional slang. There may also be a variety of test samples and occurrence tables corresponding to different domains such as banking, law, commerce, phone centers, technical support lines, or the like. When speech of a known dialect or domain is received, it is compared to a corresponding occurrence table, and the appropriate occurrence table is updated based upon the probable accuracy of the translation of the speech. Thus, the occurrence table for different dialects and domains are continually being updated as more speech is translated.
While FIG. 1 illustrates communication processing system 108 as a single device, other embodiments may perform the functions of communication processing system 108 in a plurality of devices distributed throughout communication network 108. For example, separate devices may be provided for each different method of speech to text translation, and their resulting transcriptions may then be transmitted to communication processing system 108 for compilation into database 110 and for generation of a database index. Still other examples may provide for translation of the audio data to text within communication processing system 108, while the function of creating the database index may actually be performed within database 110. FIG. 1 is simply representative of one possible structure for performing the methods described here for indexing a database.
In an example embodiment, communication processing system 108 receives audio data from audio sources 102 and 104 through communication network 106. This audio data may utilize any of a wide variety of formats. The audio data may be recorded as .mp3 or .wav files or the like. Further, the audio data may include one or more conversations within a single data file or group of data files. In some embodiments, the audio data may be translated from speech to text by other elements (not shown) within communication network 106, and the translated text may then be provided to communication processing system 108.
Communication processing system 108 processes audio data received from audio sources 102 and 104, producing an index of symbols found within the audio data. These symbols may include phonemes, words, phrases, or the like. The index of symbols may be stored in database 110 in some embodiments. Communication processing system 108 then processes the index of symbols searching for symbols that have a deviation in frequency of occurrence within a time period. This time period may be of any length. For example, communication processing system 108 may receive daily updates of audio data and search for symbols having a deviation in frequency of occurrence in comparison to the audio data received for the previous week. Other embodiments may use other periods of time in a similar method.
FIG. 2 illustrates a method of performing speech to text translation in a speech analytics system 106. Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 200). Speech analytics system 106 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 202). Speech analytics system 106 then processes the symbols using a language module and occurrence table producing text (operation 204).
Speech analytics system 106 determines a probability of correct translation for each word in the text (operation 206). This probability may be based in part or in whole on the words proceeding or following the selected word. Speech analytics system 106 compares the probability of correct translation for each word in the text to an appropriate occurrence table (operation 208). This occurrence table may be selected based upon a number of factors such as dialect or language of the speech, and the domain in which the speech was obtained.
Speech analytics system 106 then modifies the occurrence table based on the probability of correct translation for each word in the text (operation 210). This modification may simply change the occurrence probability by a fixed percentage, or by a variable percentage based on the probability of correct translation of the given word, or any other of a wide variety of methods for modification.
FIG. 2 illustrates a method of performing speech to text translation in a speech analytics system 106. Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 200). Speech analytics system 106 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 202). Speech analytics system 106 then processes the symbols using a language module and occurrence table producing text (operation 204).
Speech analytics system 106 determines a probability of correct translation for each word in the text (operation 206). This probability may be based in part or in whole on the words proceeding or following the selected word. Speech analytics system 106 compares the probability of correct translation for each word in the text to an appropriate occurrence table (operation 208). This occurrence table may be selected based upon a number of factors such as dialect or language of the speech, and the domain in which the speech was obtained.
Speech analytics system 106 then modifies the occurrence table based on the probability of correct translation for each word in the text (operation 210). This modification may simply change the occurrence probability by a fixed percentage, or by a variable percentage based on the probability of correct translation of the given word, or any other of a wide variety of methods for modification.
In accordance with aspects of the disclosure, structured speech may be identified. Structure speech may include IVR, scripts, and figures of speech. With regard to IVR, this type of structured speech is repetitive. Thus, the communication processing system 108 can recognizing errors in a transcription by taking advantage of the repetitive nature of IVR speech. An IVR message may be, “Welcome to ABC Products customer service center. All of our representatives are busy assisting other customers.” Similarly, a voicemail system prompt may be, “You have reached the voice mail box of Jane Doe, please leave your message after the tone.”
Scripts are another type of structured speech, and are typically statements spoken by agents are, as required by law, certain situations (e.g., disclaimers), and in response to customer inquiries, etc. The scripts are spoken by many different agents with typically only minor modification and timing between the agents. An agent script may be, for example, “For security purposes can you please verify the last four digits of your social security number.” Scripts may have medium length sentences, but are repeated among conversations in the contact center.
Figures of speech are small to medium-sized sentences that people tend to say even thought they are not written text read aloud. The figures of speech are typically common phrases, such as “Oh, my!” They occur with some repetition, but are typically shorter than scripts. Similar to a script, figures of speech tend to have some repetition among conversations in the contact center, but are typically shorter in length and of lower frequency.
With regard to free speech, the order and length of words in is variable. Free speech typically does not repeat among conversations. An example of free speech is, “Well, you see, first click on start.”
The communication processing system 108 can make determinations of the type of speech by looking words within the transcript. For example, for IVR speech, if a predetermined number or percentage of words in an IVR recording are recognized (e.g., 9 out of 16), the communication processing system 108 can make a determination that a particular segment of the transcript is IVR speech. The communication processing system 108 may make a determination not to index each and every word of the recognized IVR speech.
FIG. 3 illustrates a method of determining a type of speech in accordance with a structure. Audio data containing speech made up of sounds is received from either audio source 102 or recorder 104 (operation 300). Communication processing system 108 processes the sounds using a phonetic module producing symbols corresponding to the sounds (operation 302). Communication processing system 108 then processes the symbols using a language module and occurrence table producing text (operation 304).
The communication processing system 108 can make analyze the text of the transcribed speech to make determinations of the type of speech (operation 306) by looking words within the transcript. For example, the communication processing system 108 may identify structured speech based upon repetitions. The communication processing system 108 may identify IVR speech based on durations and distributions. For example, FIG. 4A illustrates patterns of IVR speech. When a certain sentence, phrase, statement, etc. repeats over and over, it can be identified. As illustrated, phrases associated with IVR speech show little deviation. However, scripts spoken by agents may exhibit a higher degree of deviation, as shown in FIG. 4B. Thus, the two types of structured speech can be identified and separated.
The communication processing system 108 may make a determination (operation 308) that a particular segment of the transcript is IVR speech based on the duration distribution of the particular segment. As such, the IVR speech can be separated (operation 310). For example, the segment, “All of our representatives are busy assisting other customers” can be identified as IVR speech.
Using this knowledge, the communication processing system 108 may determine if a predetermined number of words in an IVR recording are recognized. In accordance with the determination, the communication processing system 108 may make a determination not to index each and every word of the recognized IVR speech.
After separating IVR phrases, scripts spoken by agents can be identified by, e.g., examining a length of the phrase. As noted above, scripts are read from text or are statements that agents are trained to say, (“A Federal Law and your decision will not affect your service”). Also as noted above, figures of speech are customary statement (“Hello, how can I help you?”). Because figures of speech tend to be a few words, whereas the scripts tend to be longer sentences, a phrase can be categorized as a script (operation 312) or a figure of speech (operation 314). Thus, figures of speech can be separated out from scripts based on length.
Those phrases that do not fall into the above structures are likely to be free speech (operation 316). Separating the structures may be useful, because for example, in scripts, the word “rebate” may have a different meaning than when it occurs in a figure of speech or free speech. Thus, as will be described below, when searching on the word “rebate,” a context (script, figure of speech, or free speech) may be included in the index and searched.
Identifying scripts within a contact corpus is useful for analysis purposes (operation 318). In some implementations, agent compliance may be determined. For example, it may be determined which agents do or do not strictly adhere to scripts that include, e.g., disclaimers. Contacts may be reviewed that should include a script, but do not. Agents may be ranked based on their compliance to scripts. In addition, identifying scripts may be used to determine which agents are more or less polite that others. Politeness may be analyzed to determine if agents who are more polite helping with customer retention, sales, etc. Yet further, identifying scripts may determine if agents are attempting to up-sell, and what the characteristics of the calls are in which up-selling is performed.
For contacts within the corpus, scores for a script can be determined by setting a minimum distance between the script and words in the contact. A script may be identified by looking for a word or group of words, a Boolean expression or weighting of words. Pattern matching may be performed if a number of errors are small. However, there is not a need to search each and every word in script for it to be correct. In some implementations, an order of the words may be used.
For example, as show in FIG. 5, a threshold number of mistakes (insertions, replacements, deletions) may be set, e.g., 18 to identify a percentage of sentences as being the script. Using this approach a higher recall and precision may be obtained because the script itself has a more accurate signature that looking for the each word by itself. For example, the sequence and/or timing of the words can be used.
In some implementations, scripts may be used as categories. For example, the communication processing system 108 may identify the scripts and output a list. The communication processing system 108 may evaluate each contact for the scripts it contains (e.g., binary output). A user may use a “Script Definition Tool” (SDT) to assign a script with a name, color, impact, etc. The user may assign the script with a type, such as a greeting, authentication, hold, transfer or closure. Additional types assigned can be legal, company policy, up-sale, politeness etc. Manual edit of scripts may be performed by the user who may edit the scripts list to focus on interesting scripts and perform “fine tuning.” Each script can be given a name, color, impact similarly to categories.
In some implementations, the communication processing system 108 may utilize scripts similarly to categories. For example, scripts may be used as a filter in a query. Since the script is binary, a “NOT” operator can be used for checking compliance. Scripts may be displayed, and impact and relevance determined for a specific query. In a player application, scripts may be marked within a contact (see, e.g., FIG. 5A).
In some implementations, scripts may be identified as part of a quality management and scorecards. A supervisor may obtain a list of sentences that each of his/her agents tends to use. The supervisor may ascertain the greetings/closure each agent uses. The supervisor may determine an agents first call resolution capabilities.
Scripts may be exported to database 110. From database 110, the scripts can be integrated with evaluation forms (QM) and Scorecards. Scripts compliance can be used in QM as metrics for evaluations, and for training purposes. Script adherence reports may be generated to determine which agents exceptionally use certain scripts. The reports may also surface scripts that have exceptionally low or high compliance. For each agent, a graph of his/her compliance to various scripts may be generated, as well as an overall scripts compliance graph for all scripts.
In some implementations, analytics may be performed to determine how the usage of an up-sale script contribute to sales (e.g., using meta data); whether agent politeness leads to better customer satisfaction (e.g., using categories); and whether a polite agent helps improve customer retention; whether complying to company policy has a positive effect on sales. Analytics may determine other aspects, such as what characterizes a specific agent group and what their common scripts are. In addition, it may be determined what characterizes good agents; and what are their common scripts (e.g., using QM data).
In the above, the user need not type in whole script when monitoring agents for compliance, QM, etc. Special identifiers can be added to the index and used to searching purposes.
FIG. 6 illustrates the communication processing system of FIG. 1 in greater detail. The communication processing system 108 may include communication interface 301, user interface 302, and processing system 303. Processing system 303 is linked to communication interface 301 and user interface 302. Processing system 303 includes processing circuitry 305 and memory device 306 that stores operating software 307.
Communication interface 301 includes components that communicate over communication links, such as network cards, ports, RF transceivers, processing circuitry and software, or some other communication devices. Communication interface 301 may be configured to communicate over metallic, wireless, or optical links. Communication interface 301 may be configured to use TDM, IP, Ethernet, optical networking, wireless protocols, communication signaling, or some other communication format—including combinations thereof. In this example, communication interface 301 is configured to receive audio data from recorder 104 or directly from audio source 102.
User interface 302 includes components that interact with a user. User interface 302 may include a keyboard, display screen, mouse, touch pad, or some other user input/output apparatus. User interface 302 may be omitted in some examples.
Processing circuitry 305 includes microprocessor and other circuitry that retrieves and executes operating software 307 from memory device 306. Memory device 306 includes a disk drive, flash drive, data storage circuitry, or some other memory apparatus. Operating software 307 includes computer programs, firmware, or some other form of machine-readable processing instructions. Operating software 307 may include an operating system, utilities, drivers, network interfaces, applications, or some other type of software. When executed by circuitry 305, operating software 307 directs processing system 303 to operate communication processing system 108 as described herein.
In this example, operating software 307 includes a phonetic module that directs processing circuitry 305 to translate speech to sounds, a language module that directs processing circuitry 305 to translate sounds to text, and an occurrence table that is used with the language module to improve the accuracy of the sounds to text translation.
The above description and associated figures teach the best mode of the invention. The following claims specify the scope of the invention. Note that some aspects of the best mode may not fall within the scope of the invention as specified by the claims. Those skilled in the art will appreciate that the features described above can be combined in various ways to form multiple variations of the invention. As a result, the invention is not limited to the specific embodiments described above, but only by the following claims and their equivalents.

Claims (15)

What is claimed is:
1. A method for determining structured speech, the method comprising:
translating an audio recording into text using a text-to-speech communication processing system;
receiving a transcript of the audio recording;
analyzing text in the transcript to determine repetitions within the text, the repetitions being indicative of structured speech, wherein the text is analyzed using Large Vocabulary Continuous Speech Recognition (LVCSR);
determining a duration distribution of the repetitions to ascertain a first type of structured speech; and
determining a length of the repetitions to ascertain a second type of structured speech;
comparing probability of correct translation of the text-to-speech communication for each word in the text to an appropriate occurrence table, wherein the occurrence table is selected based upon dialect or language of the speech, and domain in which the speech was obtained; and
modifying the occurrence table based on the probability of correct translation for each word in the text.
2. The method of claim 1, further comprising determining a third type of structured speech when the length of the repetitions is greater than a predetermined threshold.
3. The method of claim 2, wherein the first type of structured speech is interactive voice response (IVR) generated speech, wherein the second type of structured speech is scripts, and wherein the third type of structured speech is figures of speech.
4. The method of claim 1, further comprising applying a distance threshold to determine contacts that contain the second type of structured speech.
5. The method of claim 4, wherein the distance threshold is approximately 18.
6. The method of claim 1, further comprising analyzing the second type of speech to determine one of compliance, quality management, and categories.
7. The method of claim 6, further comprising:
defining the second type of speech as a category; and
evaluating a contact to determine if the contact contains the category.
8. The method of claim 6, further comprising using the second type of speech as a filter in a query.
9. The method of claim 1, further comprising:
storing the second type of structured speech in a database; and
applying meta data to the second type of structured speech to annotate the second type of structured speech.
10. The method of claim 1, wherein modification of the occurrence table changes the occurrence probability by a fixed percentage or a variable percentage based on the probability of correct translation of a given word.
11. A method of determining scripts within speech associated with a contact center, comprising:
translating a speech into text using a text-to-speech communication processing system;
receiving a transcript of the speech;
analyzing the transcript to determine repetitions within the speech that are indicative of structured speech, wherein the text is analyzed using Large Vocabulary Continuous Speech Recognition (LVCSR); and
determining a duration distribution and length of the repetitions with the speed to determine which repetitions are scripts;
comparing probability of correct translation of the text-to-speech communication for each word in the text to an appropriate occurrence table, wherein the occurrence table is selected based upon dialect or language of the speech, and domain in which the speech was obtained; and
modifying the occurrence table based on the probability of correct translation for each word in the text.
12. The method of claim 11, further comprising:
storing a corpus of contacts in a database; and
applying a distance threshold to determine the contacts that contain the scripts.
13. The method of claim 11, further comprising applying analytics to the scripts to categorize the scripts.
14. The method of claim 13, further comprising querying contacts using categories of scripts.
15. The method of claim 11, wherein modification of the occurrence table changes the occurrence probability by a fixed percentage or a variable percentage based on the probability of correct translation of a given word.
US12/755,549 2009-04-07 2010-04-07 Speech analytics system and system and method for determining structured speech Active 2031-03-06 US8719016B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/755,549 US8719016B1 (en) 2009-04-07 2010-04-07 Speech analytics system and system and method for determining structured speech
US14/270,280 US9401145B1 (en) 2009-04-07 2014-05-05 Speech analytics system and system and method for determining structured speech

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16749509P 2009-04-07 2009-04-07
US17879509P 2009-05-15 2009-05-15
US12/755,549 US8719016B1 (en) 2009-04-07 2010-04-07 Speech analytics system and system and method for determining structured speech

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/270,280 Division US9401145B1 (en) 2009-04-07 2014-05-05 Speech analytics system and system and method for determining structured speech

Publications (1)

Publication Number Publication Date
US8719016B1 true US8719016B1 (en) 2014-05-06

Family

ID=50552901

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/755,549 Active 2031-03-06 US8719016B1 (en) 2009-04-07 2010-04-07 Speech analytics system and system and method for determining structured speech
US14/270,280 Active US9401145B1 (en) 2009-04-07 2014-05-05 Speech analytics system and system and method for determining structured speech

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/270,280 Active US9401145B1 (en) 2009-04-07 2014-05-05 Speech analytics system and system and method for determining structured speech

Country Status (1)

Country Link
US (2) US8719016B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130262124A1 (en) * 2012-03-30 2013-10-03 Aurix Limited "at least" operator for combining audio search hits
US20170206891A1 (en) * 2016-01-16 2017-07-20 Genesys Telecommunications Laboratories, Inc. Material selection for language model customization in speech recognition for speech analytics
EP3200187A1 (en) 2016-01-28 2017-08-02 Flex Ltd. Human voice feedback system
US20190340238A1 (en) * 2018-05-01 2019-11-07 Disney Enterprises, Inc. Natural polite language generation system
US10642889B2 (en) 2017-02-20 2020-05-05 Gong I.O Ltd. Unsupervised automated topic detection, segmentation and labeling of conversations
US11195542B2 (en) * 2019-10-31 2021-12-07 Ron Zass Detecting repetitions in audio data
US11276407B2 (en) 2018-04-17 2022-03-15 Gong.Io Ltd. Metadata-based diarization of teleconferences

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003595A1 (en) * 2011-04-25 2015-01-01 Transparency Sciences, Llc System, Method and Computer Program Product for a Universal Call Capture Device
US9654625B1 (en) 2014-06-10 2017-05-16 Tech-Friends Ltd. Communication monitoring systems and methods
US11356557B1 (en) * 2020-12-15 2022-06-07 Nice Ltd System and method to evaluate agent call logging in a contact center

Citations (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594919A (en) 1969-09-23 1971-07-27 Economy Co Tutoring devices
US3705271A (en) 1971-03-26 1972-12-05 Economy Co Audio tutoring device including recording capability
US4510351A (en) 1982-10-28 1985-04-09 At&T Bell Laboratories ACD Management information system
US4684349A (en) 1984-02-15 1987-08-04 Frank Ferguson Audio-visual teaching system and method
US4694483A (en) 1986-06-02 1987-09-15 Innings Telecom Inc. Computerized system for routing incoming telephone calls to a plurality of agent positions
US4763353A (en) 1986-02-14 1988-08-09 American Telephone And Telegraph Company Terminal based adjunct call manager for a communication system
US4815120A (en) 1987-07-28 1989-03-21 Enforcement Support Incorporated Computerized telephone monitoring system
US4924488A (en) 1987-07-28 1990-05-08 Enforcement Support Incorporated Multiline computerized telephone monitoring system
US4953159A (en) 1989-01-03 1990-08-28 American Telephone And Telegraph Company Audiographics conferencing arrangement
US5016272A (en) 1989-06-16 1991-05-14 Stubbs James R Home video system
EP0453128A2 (en) 1990-04-12 1991-10-23 AT&T Corp. Multiple call control method in a multimedia conferencing system
US5101402A (en) 1988-05-24 1992-03-31 Digital Equipment Corporation Apparatus and method for realtime monitoring of network sessions in a local area network
US5117225A (en) 1989-05-01 1992-05-26 Summit Micro Design Computer display screen monitoring system
US5210789A (en) 1991-06-28 1993-05-11 International Telecharge, Inc. Interactive telephone operator terminal
US5239460A (en) 1991-01-03 1993-08-24 At&T Bell Laboratories Arrangement for motivating telemarketing agents
US5241625A (en) 1990-11-27 1993-08-31 Farallon Computing, Inc. Screen image sharing among heterogeneous computers
US5267865A (en) 1992-02-11 1993-12-07 John R. Lee Interactive computer aided natural learning method and apparatus
US5299260A (en) 1990-11-20 1994-03-29 Unifi Communications Corporation Telephone call handling system
US5311422A (en) 1990-06-28 1994-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration General purpose architecture for intelligent computer-aided training
US5315711A (en) 1991-11-01 1994-05-24 Unisys Corporation Method and apparatus for remotely and centrally controlling a plurality of host processors
US5317628A (en) 1986-07-17 1994-05-31 Efrat Future Technology Ltd. Message management system
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5388252A (en) 1990-09-07 1995-02-07 Eastman Kodak Company System for transparent monitoring of processors in a network with display of screen images at a remote station for diagnosis by technical support personnel
US5396371A (en) 1993-12-21 1995-03-07 Dictaphone Corporation Endless loop voice data storage and retrievable apparatus and method thereof
US5432715A (en) 1992-06-29 1995-07-11 Hitachi, Ltd. Computer system and monitoring method
US5465286A (en) 1994-05-24 1995-11-07 Executone Information Systems, Inc. Apparatus for supervising an automatic call distribution telephone system
US5475625A (en) 1991-01-16 1995-12-12 Siemens Nixdorf Informationssysteme Aktiengesellschaft Method and arrangement for monitoring computer manipulations
US5485569A (en) 1992-10-20 1996-01-16 Hewlett-Packard Company Method and apparatus for monitoring display screen events in a screen-oriented software application too
US5491780A (en) 1992-09-15 1996-02-13 International Business Machines Corporation System and method for efficient computer workstation screen updates
US5499291A (en) 1993-01-14 1996-03-12 At&T Corp. Arrangement for automating call-center agent-schedule-notification and schedule-adherence functions
US5535256A (en) 1993-09-22 1996-07-09 Teknekron Infoswitch Corporation Method and system for automatically monitoring the performance quality of call center service representatives
US5572652A (en) 1994-04-04 1996-11-05 The United States Of America As Represented By The Secretary Of The Navy System and method for monitoring and controlling one or more computer sites
US5577112A (en) 1991-05-28 1996-11-19 Davox Corporation Telephony system with supervisory management center and parameter testing with alerts
US5590171A (en) 1994-07-07 1996-12-31 Bellsouth Corporation Method and apparatus for communications monitoring
US5597312A (en) 1994-05-04 1997-01-28 U S West Technologies, Inc. Intelligent tutoring method and system
US5619183A (en) 1994-09-12 1997-04-08 Richard C. Ziegra Video audio data remote system
EP0773687A2 (en) 1995-11-07 1997-05-14 AT&T Corp. Usage management sytem
US5696906A (en) 1995-03-09 1997-12-09 Continental Cablevision, Inc. Telecommunicaion user account management system and method
US5717879A (en) 1995-11-03 1998-02-10 Xerox Corporation System for the capture and replay of temporal data representing collaborative activities
US5721842A (en) 1995-08-25 1998-02-24 Apex Pc Solutions, Inc. Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch
US5742670A (en) 1995-01-09 1998-04-21 Ncr Corporation Passive telephone monitor to control collaborative systems
US5748499A (en) 1995-09-19 1998-05-05 Sony Corporation Computer graphics data recording and playback system with a VCR-based graphic user interface
US5784452A (en) 1994-06-01 1998-07-21 Davox Corporation Telephony call center with agent work groups
US5790798A (en) 1996-05-31 1998-08-04 Witness Systems, Inc. Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location
US5796952A (en) 1997-03-21 1998-08-18 Dot Com Development, Inc. Method and apparatus for tracking client interaction with a network resource and creating client profiles and resource database
US5809250A (en) 1996-10-23 1998-09-15 Intel Corporation Methods for creating and sharing replayable modules representive of Web browsing session
US5809247A (en) 1996-07-22 1998-09-15 Intel Corporation Method and apparatus for guided touring of internet/intranet websites
US5825869A (en) 1995-04-24 1998-10-20 Siemens Business Communication Systems, Inc. Call management method and system for skill-based routing
US5835572A (en) 1990-10-01 1998-11-10 United States Advanced Network, Inc. Customized, billing controlled call bridging system
US5862330A (en) 1996-07-16 1999-01-19 Lucent Technologies Inc. Technique for obtaining and exchanging information on wolrd wide web
US5864772A (en) 1996-12-23 1999-01-26 Schlumberger Technology Corporation Apparatus, system and method to transmit and display acquired well data in near real time at a remote location
US5884032A (en) 1995-09-25 1999-03-16 The New Brunswick Telephone Company, Limited System for coordinating communications via customer contact channel changing system using call centre for setting up the call between customer and an available help agent
US5907680A (en) 1996-06-24 1999-05-25 Sun Microsystems, Inc. Client-side, server-side and collaborative spell check of URL's
US5918214A (en) 1996-10-25 1999-06-29 Ipf, Inc. System and method for finding product and service related information on the internet
US5923746A (en) 1996-09-18 1999-07-13 Rockwell International Corp. Call recording system and method for use with a telephonic switch
US5933811A (en) 1996-08-20 1999-08-03 Paul D. Angles System and method for delivering customized advertisements within interactive communication systems
US5944791A (en) 1996-10-04 1999-08-31 Contigo Software Llc Collaborative web browser
US5948061A (en) 1996-10-29 1999-09-07 Double Click, Inc. Method of delivery, targeting, and measuring advertising over networks
US5958016A (en) 1997-07-13 1999-09-28 Bell Atlantic Network Services, Inc. Internet-web link for access to intelligent network service control
US5964836A (en) 1997-09-11 1999-10-12 International Business Machines Corporation Apparatus, methods and computer program products for managing web-page-embedded sessions with a host-based application
US5978648A (en) 1997-03-06 1999-11-02 Forte Systems, Inc. Interactive multimedia performance assessment system and process for use by students, educators and administrators
US5982857A (en) 1994-10-17 1999-11-09 Apropros Technology Voice recording method and system providing context specific storage and retrieval
US5987466A (en) 1997-11-25 1999-11-16 International Business Machines Corporation Presenting web pages with discrete, browser-controlled complexity levels
US5991373A (en) 1997-09-15 1999-11-23 Teknekron Infoswitch Corporation Reproduction of a voice and video session
US5990852A (en) 1996-10-31 1999-11-23 Fujitsu Limited Display screen duplication system and method
US6005932A (en) 1997-12-24 1999-12-21 Rockwell Semiconductor Systems Inc. Dynamic schedule profiler for ACD
US6009429A (en) 1997-11-13 1999-12-28 International Business Machines Corporation HTML guided web tour
US6014134A (en) 1996-08-23 2000-01-11 U S West, Inc. Network-based intelligent tutoring system
US6014647A (en) 1997-07-08 2000-01-11 Nizzari; Marcia M. Customer interaction tracking
US6018619A (en) 1996-05-24 2000-01-25 Microsoft Corporation Method, system and apparatus for client-side usage tracking of information server systems
US6035332A (en) 1997-10-06 2000-03-07 Ncr Corporation Method for monitoring user interactions with web pages from web server using data and command lists for maintaining information visited and issued by participants
US6038544A (en) 1998-02-26 2000-03-14 Teknekron Infoswitch Corporation System and method for determining the performance of a user responding to a call
US6039575A (en) 1996-10-24 2000-03-21 National Education Corporation Interactive learning system with pretest
EP0989720A1 (en) 1998-08-27 2000-03-29 France Telecom Telephone apparatus for a prison medium
US6057841A (en) 1997-01-31 2000-05-02 Microsoft Corporation System and method for processing electronic messages with rules representing a combination of conditions, actions or exceptions
US6061798A (en) 1996-02-06 2000-05-09 Network Engineering Software, Inc. Firewall system for protecting network elements connected to a public network
US6072860A (en) 1996-01-16 2000-06-06 Global Tel*Link Corp. Telephone apparatus with recording of phone conversations on massive storage
US6076099A (en) 1997-09-09 2000-06-13 Chen; Thomas C. H. Method for configurable intelligent-agent-based wireless communication system
US6078894A (en) 1997-03-28 2000-06-20 Clawson; Jeffrey J. Method and system for evaluating the performance of emergency medical dispatchers
US6091712A (en) 1994-12-23 2000-07-18 Applied Digital Access, Inc. Method and apparatus for storing and retrieving performance data collected by a network interface unit
US6108711A (en) 1998-09-11 2000-08-22 Genesys Telecommunications Laboratories, Inc. Operating system having external media layer, workflow layer, internal media layer, and knowledge base for routing media events between transactions
US6122665A (en) 1998-08-26 2000-09-19 Sts Software System Ltd. Communication management system for computer network-based telephones
US6122668A (en) 1995-11-02 2000-09-19 Starlight Networks Synchronization of audio and video signals in a live multicast in a LAN
US6130668A (en) 1994-07-25 2000-10-10 Apple Computer, Inc. Supervisory control system for networked multimedia workstations that provides simultaneous observation of multiple remote workstations
US6138139A (en) 1998-10-29 2000-10-24 Genesys Telecommunications Laboraties, Inc. Method and apparatus for supporting diverse interaction paths within a multimedia communication center
US6144991A (en) 1998-02-19 2000-11-07 Telcordia Technologies, Inc. System and method for managing interactions between users in a browser-based telecommunications network
US6146148A (en) 1996-09-25 2000-11-14 Sylvan Learning Systems, Inc. Automated testing and electronic instructional delivery and student management system
US6151622A (en) 1998-02-02 2000-11-21 International Business Machines Corp. Method and system for portably enabling view synchronization over the world-wide web using frame hierarchies
US6154771A (en) 1998-06-01 2000-11-28 Mediastra, Inc. Real-time receipt, decompression and play of compressed streaming video/hypervideo; with thumbnail display of past scenes and with replay, hyperlinking and/or recording permissively intiated retrospectively
US6157808A (en) 1996-07-17 2000-12-05 Gpu, Inc. Computerized employee certification and training system
US6171109B1 (en) 1997-06-18 2001-01-09 Adin Research, Inc. Method for generating a multi-strata model and an intellectual information processing device
US6173437B1 (en) * 1997-07-24 2001-01-09 Intervoice Limited Partnership Multimedia scripting tool
US6182094B1 (en) 1997-06-25 2001-01-30 Samsung Electronics Co., Ltd. Programming tool for home networks with an HTML page for a plurality of home devices
US6195679B1 (en) 1998-01-06 2001-02-27 Netscape Communications Corporation Browsing session recording playback and editing system for generating user defined paths and allowing users to mark the priority of items in the paths
US6201948B1 (en) 1996-05-22 2001-03-13 Netsage Corporation Agent based instruction system and method
US6211451B1 (en) 1998-01-29 2001-04-03 Yamaha Corporation Music lesson system with local training terminal and remote supervisory station
US6225993B1 (en) 1996-04-22 2001-05-01 Sun Microsystems, Inc. Video on demand applet method and apparatus for inclusion of motion video in multimedia documents
US20010000962A1 (en) 1998-06-26 2001-05-10 Ganesh Rajan Terminal for composing and presenting MPEG-4 video programs
US6236977B1 (en) 1999-01-04 2001-05-22 Realty One, Inc. Computer implemented marketing system
US6244758B1 (en) 1994-11-15 2001-06-12 Absolute Software Corp. Apparatus and method for monitoring electronic devices via a global network
US6282548B1 (en) 1997-06-21 2001-08-28 Alexa Internet Automatically generate and displaying metadata as supplemental information concurrently with the web page, there being no link between web page and metadata
US6286030B1 (en) 1998-07-10 2001-09-04 Sap Aktiengesellschaft Systems and methods for recording and visually recreating sessions in a client-server environment
US6286046B1 (en) 1997-12-22 2001-09-04 International Business Machines Corporation Method of recording and measuring e-business sessions on the world wide web
US6288753B1 (en) 1999-07-07 2001-09-11 Corrugated Services Corp. System and method for live interactive distance learning
US6289340B1 (en) 1999-08-03 2001-09-11 Ixmatch, Inc. Consultant matching system and method for selecting candidates from a candidate pool by adjusting skill values
US6301462B1 (en) 1999-01-15 2001-10-09 Unext. Com Online collaborative apprenticeship
US6301573B1 (en) 1997-03-21 2001-10-09 Knowlagent, Inc. Recurrent training system
US20010032335A1 (en) 2000-03-03 2001-10-18 Jones Lawrence R. Picture communications system and associated network services
US20010043697A1 (en) 1998-05-11 2001-11-22 Patrick M. Cox Monitoring of and remote access to call center activity
US6324282B1 (en) 2000-03-02 2001-11-27 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6347374B1 (en) 1998-06-05 2002-02-12 Intrusion.Com, Inc. Event detection
US6351467B1 (en) 1997-10-27 2002-02-26 Hughes Electronics Corporation System and method for multicasting multimedia content
US6353851B1 (en) 1998-12-28 2002-03-05 Lucent Technologies Inc. Method and apparatus for sharing asymmetric information and services in simultaneously viewed documents on a communication system
US6360250B1 (en) 1998-12-28 2002-03-19 Lucent Technologies Inc. Apparatus and method for sharing information in simultaneously viewed documents on a communication system
US20020038363A1 (en) 2000-09-28 2002-03-28 Maclean John M. Transaction management system
US6370574B1 (en) 1996-05-31 2002-04-09 Witness Systems, Inc. Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location
US20020052948A1 (en) 2000-09-13 2002-05-02 Imedication S.A. A French Corporation Method and system for managing network-based partner relationships
GB2369263A (en) 2000-01-24 2002-05-22 Comverse Infosys Inc Information retrieval from a contact centre over a wide area network
US20020065912A1 (en) 2000-11-30 2002-05-30 Catchpole Lawrence W. Web session collaboration
US20020065911A1 (en) 2000-10-03 2002-05-30 Von Klopp Ana H. HTTP transaction monitor with edit and replay capacity
US6404857B1 (en) 1996-09-26 2002-06-11 Eyretel Limited Signal monitoring apparatus for analyzing communications
US6411989B1 (en) 1998-12-28 2002-06-25 Lucent Technologies Inc. Apparatus and method for sharing information in simultaneously viewed documents on a communication system
US6418471B1 (en) 1997-10-06 2002-07-09 Ncr Corporation Method for recording and reproducing the browsing activities of an individual web browser
US20020128821A1 (en) 1999-05-28 2002-09-12 Farzad Ehsani Phrase-based dialogue modeling with particular application to creating recognition grammars for voice-controlled user interfaces
US20020128925A1 (en) 2000-12-11 2002-09-12 Patrick Angeles system and method for detecting and reporting online activity using real-time content-based network monitoring
US20020143925A1 (en) 2000-12-29 2002-10-03 Ncr Corporation Identifying web-log data representing a single user session
US20020165954A1 (en) 2001-05-04 2002-11-07 Kave Eshghi System and method for monitoring browser event activities
US6487195B1 (en) 1996-10-23 2002-11-26 Ncr Corporation Collaborative network navigation synchronization mechanism
US6493758B1 (en) 1998-09-08 2002-12-10 Microsoft Corporation Offline viewing of internet content with a mobile device
US6502131B1 (en) 1997-05-27 2002-12-31 Novell, Inc. Directory enabled policy management tool for intelligent traffic management
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US20030055883A1 (en) 2001-03-30 2003-03-20 Wiles Philip V. Synthetic transaction monitor
US6542602B1 (en) 2000-02-14 2003-04-01 Nice Systems Ltd. Telephone call monitoring system
US6546405B2 (en) 1997-10-23 2003-04-08 Microsoft Corporation Annotating temporally-dimensioned multimedia content
US20030079020A1 (en) 2001-10-23 2003-04-24 Christophe Gourraud Method, system and service provider for IP media program transfer-and-viewing-on-demand
US6560328B1 (en) 1997-04-03 2003-05-06 Genesys Telecommunications Laboratories, Inc. Voice extensions in a call-in center employing virtual restructuring for computer telephony integrated functionality
US20030099335A1 (en) * 2001-11-28 2003-05-29 Nobuaki Tanaka Interactive voice response system that enables an easy input in menu option selection
US6583806B2 (en) 1993-10-01 2003-06-24 Collaboration Properties, Inc. Videoconferencing hardware
US20030144900A1 (en) 2002-01-28 2003-07-31 Whitmer Michael L. Method and system for improving enterprise performance
US6606657B1 (en) 1999-06-22 2003-08-12 Comverse, Ltd. System and method for processing and presenting internet usage information
US20030154240A1 (en) 2002-02-08 2003-08-14 E-Talk Corporation System and method for implementing recording plans using a session manager
US20030204404A1 (en) * 2002-04-25 2003-10-30 Weldon Phyllis Marie Dyer Systems, methods and computer program products for designing, deploying and managing interactive voice response (IVR) systems
US6665644B1 (en) 1999-08-10 2003-12-16 International Business Machines Corporation Conversational data mining
US6674447B1 (en) 1999-12-06 2004-01-06 Oridus, Inc. Method and apparatus for automatically recording snapshots of a computer screen during a computer session for later playback
US6683633B2 (en) 2000-03-20 2004-01-27 Incontext Enterprises, Inc. Method and system for accessing information
US6697858B1 (en) 2000-08-14 2004-02-24 Telephony@Work Call center
US20040062364A1 (en) * 2002-09-27 2004-04-01 Rockwell Electronic Commerce Technologies, L.L.C. Method selecting actions or phases for an agent by analyzing conversation content and emotional inflection
US6724887B1 (en) 2000-01-24 2004-04-20 Verint Systems, Inc. Method and system for analyzing customer communications with a contact center
US6738456B2 (en) 2001-09-07 2004-05-18 Ronco Communications And Electronics, Inc. School observation and supervisory system
US20040100507A1 (en) 2001-08-24 2004-05-27 Omri Hayner System and method for capturing browser sessions and user actions
US6772396B1 (en) 1999-10-07 2004-08-03 Microsoft Corporation Content distribution system for network environments
US6775377B2 (en) 2001-09-10 2004-08-10 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6792575B1 (en) 1999-10-21 2004-09-14 Equilibrium Technologies Automated processing and delivery of media to web servers
US6810414B1 (en) 2000-02-04 2004-10-26 Dennis A. Brittain System and methods for easy-to-use periodic network data capture engine with automatic target data location, extraction and storage
US6820083B1 (en) 1999-12-06 2004-11-16 Interface Software, Inc. Relationship management system that limits access of contact information to particular folders
US6823384B1 (en) 1999-10-15 2004-11-23 James Wilson Methods and apparatus for securely collecting customer service agent data in a multi-tenant environment
US6870916B2 (en) 2001-09-14 2005-03-22 Lucent Technologies Inc. Targeted and intelligent multimedia conference establishment services
US6871229B2 (en) 1998-08-26 2005-03-22 Sts Software Systems Ltd. Method for storing on a computer network a portion of a communication session between a packet source and a packet destination
US20050108518A1 (en) 2003-06-10 2005-05-19 Pandya Ashish A. Runtime adaptable security processor
US6901438B1 (en) 1999-11-12 2005-05-31 Bmc Software System selects a best-fit form or URL in an originating web page as a target URL for replaying a predefined path through the internet
US20050133565A1 (en) 2003-11-27 2005-06-23 Hong-Ro Lee Laser annealing apparatus for processing semiconductor devices in inline manner
US6959078B1 (en) 2000-01-24 2005-10-25 Verint Systems Inc. Apparatus and method for monitoring and adapting to environmental factors within a contact center
US6965886B2 (en) 2001-11-01 2005-11-15 Actimize Ltd. System and method for analyzing and utilizing data, by executing complex analytical models in real time
US20060080107A1 (en) 2003-02-11 2006-04-13 Unveil Technologies, Inc., A Delaware Corporation Management of conversations
US20060188075A1 (en) 2005-02-22 2006-08-24 Bbnt Solutions Llc Systems and methods for presenting end to end calls and associated information
US7170979B1 (en) * 2000-12-08 2007-01-30 Ben Franklin Patent Holding Llc System for embedding programming language content in voiceXML
US20070150275A1 (en) 1999-10-28 2007-06-28 Canon Kabushiki Kaisha Pattern matching method and apparatus
US7310600B1 (en) 1999-10-28 2007-12-18 Canon Kabushiki Kaisha Language recognition using a similarity measure
US20080235018A1 (en) 2004-01-20 2008-09-25 Koninklikke Philips Electronic,N.V. Method and System for Determing the Topic of a Conversation and Locating and Presenting Related Content
US7590542B2 (en) * 2002-05-08 2009-09-15 Douglas Carter Williams Method of generating test scripts using a voice-capable markup language
US20090327279A1 (en) 2008-06-25 2009-12-31 International Business Machines Corporation Apparatus and method for supporting document data search
US20100005081A1 (en) 1999-11-12 2010-01-07 Bennett Ian M Systems for natural language processing of sentence based queries
US20100098225A1 (en) 2008-10-17 2010-04-22 Commonwealth Intellectual Property Holdings, Inc. Intuitive voice navigation
US7706520B1 (en) 2005-11-08 2010-04-27 Liveops, Inc. System and method for facilitating transcription of audio recordings, with auditing
US20100104087A1 (en) 2008-10-27 2010-04-29 International Business Machines Corporation System and Method for Automatically Generating Adaptive Interaction Logs from Customer Interaction Text
US20100161315A1 (en) 2008-12-24 2010-06-24 At&T Intellectual Property I, L.P. Correlated call analysis
US7953219B2 (en) 2001-07-19 2011-05-31 Nice Systems, Ltd. Method apparatus and system for capturing and analyzing interaction based content
US7991613B2 (en) 2006-09-29 2011-08-02 Verint Americas Inc. Analyzing audio components and generating text with integrated additional session information
US8112306B2 (en) 2006-02-22 2012-02-07 Verint Americas, Inc. System and method for facilitating triggers and workflows in workforce optimization

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004883B2 (en) * 1994-10-18 2000-01-31 ケイディディ株式会社 End call detection method and apparatus and continuous speech recognition method and apparatus
US5918222A (en) 1995-03-17 1999-06-29 Kabushiki Kaisha Toshiba Information disclosing apparatus and multi-modal information input/output system
US5757644A (en) 1996-07-25 1998-05-26 Eis International, Inc. Voice interactive call center training method using actual screens and screen logic
US6100891A (en) 1998-06-09 2000-08-08 Teledirect International, Inc. Call center agent interface and development tool
CA2343286A1 (en) 1998-09-11 2000-03-23 Genesys Telecommunications Laboratories, Inc. Method and apparatus for rules-based storage and retrieval of multimedia interactions within a communication center
US6697457B2 (en) 1999-08-31 2004-02-24 Accenture Llp Voice messaging system that organizes voice messages based on detected emotion
US6275806B1 (en) 1999-08-31 2001-08-14 Andersen Consulting, Llp System method and article of manufacture for detecting emotion in voice signals by utilizing statistics for voice signal parameters
WO2001059625A1 (en) 2000-02-10 2001-08-16 Involve Technology, Llc System for creating and maintaining a database of information utilizing user opinions
US6721734B1 (en) 2000-04-18 2004-04-13 Claritech Corporation Method and apparatus for information management using fuzzy typing
US6751614B1 (en) 2000-11-09 2004-06-15 Satyam Computer Services Limited Of Mayfair Centre System and method for topic-based document analysis for information filtering
US7739115B1 (en) 2001-02-15 2010-06-15 West Corporation Script compliance and agent feedback
US7039166B1 (en) 2001-03-05 2006-05-02 Verizon Corporate Services Group Inc. Apparatus and method for visually representing behavior of a user of an automated response system
US6823054B1 (en) 2001-03-05 2004-11-23 Verizon Corporate Services Group Inc. Apparatus and method for analyzing an automated response system
US7107215B2 (en) 2001-04-16 2006-09-12 Sakhr Software Company Determining a compact model to transcribe the arabic language acoustically in a well defined basic phonetic study
EP1256937B1 (en) 2001-05-11 2006-11-02 Sony France S.A. Emotion recognition method and device
US7660459B2 (en) 2001-06-12 2010-02-09 International Business Machines Corporation Method and system for predicting customer behavior based on data network geography
JP3644955B2 (en) * 2001-09-27 2005-05-11 松下電器産業株式会社 Conversation device, conversation master device, conversation slave device, conversation control method, and conversation control program
US7613717B1 (en) 2001-10-26 2009-11-03 Teradata Us, Inc. Automated system for rating customer feedback
US6914975B2 (en) 2002-02-21 2005-07-05 Sbc Properties, L.P. Interactive dialog-based training method
US8239197B2 (en) 2002-03-28 2012-08-07 Intellisist, Inc. Efficient conversion of voice messages into text
US7076430B1 (en) 2002-05-16 2006-07-11 At&T Corp. System and method of providing conversational visual prosody for talking heads
US7542902B2 (en) 2002-07-29 2009-06-02 British Telecommunications Plc Information provision for call centres
WO2004029773A2 (en) 2002-09-27 2004-04-08 Callminer, Inc. Software for statistical analysis of speech
US8055503B2 (en) 2002-10-18 2011-11-08 Siemens Enterprise Communications, Inc. Methods and apparatus for audio data analysis and data mining using speech recognition
US20040098265A1 (en) 2002-11-05 2004-05-20 Sean Kelly Dialog management system
US7606714B2 (en) 2003-02-11 2009-10-20 Microsoft Corporation Natural language classification within an automated response system
US7610313B2 (en) 2003-07-25 2009-10-27 Attenex Corporation System and method for performing efficient document scoring and clustering
WO2005046195A1 (en) 2003-11-05 2005-05-19 Nice Systems Ltd. Apparatus and method for event-driven content analysis
JP2005202535A (en) 2004-01-14 2005-07-28 Hitachi Ltd Document tabulation method and device, and storage medium storing program used therefor
US9076343B2 (en) 2004-04-06 2015-07-07 International Business Machines Corporation Self-service system for education
US8805717B2 (en) 2004-08-31 2014-08-12 Hartford Fire Insurance Company Method and system for improving performance of customer service representatives
US7533018B2 (en) 2004-10-19 2009-05-12 Motorola, Inc. Tailored speaker-independent voice recognition system
US20060179064A1 (en) 2005-02-07 2006-08-10 Nice Systems Ltd. Upgrading performance using aggregated information shared between management systems
US7720214B2 (en) 2005-02-22 2010-05-18 International Business Machines Corporation Call center study method and system
US8032823B2 (en) 2005-04-15 2011-10-04 Carnegie Mellon University Intent-based information processing and updates
US8568144B2 (en) 2005-05-09 2013-10-29 Altis Avante Corp. Comprehension instruction system and method
US7995717B2 (en) 2005-05-18 2011-08-09 Mattersight Corporation Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto
US7940897B2 (en) 2005-06-24 2011-05-10 American Express Travel Related Services Company, Inc. Word recognition system and method for customer and employee assessment
US9300790B2 (en) 2005-06-24 2016-03-29 Securus Technologies, Inc. Multi-party conversation analyzer and logger
US20070016580A1 (en) 2005-07-15 2007-01-18 International Business Machines Corporation Extracting information about references to entities rom a plurality of electronic documents
US20070043608A1 (en) 2005-08-22 2007-02-22 Recordant, Inc. Recorded customer interactions and training system, method and computer program product
NO20054720L (en) 2005-10-13 2007-04-16 Fast Search & Transfer Asa Information access with user-driven metadata feedback
US8108237B2 (en) 2006-02-22 2012-01-31 Verint Americas, Inc. Systems for integrating contact center monitoring, training and scheduling
US8396741B2 (en) 2006-02-22 2013-03-12 24/7 Customer, Inc. Mining interactions to manage customer experience throughout a customer service lifecycle
US20070198330A1 (en) 2006-02-22 2007-08-23 Shmuel Korenblit Integrated contact center systems for facilitating contact center coaching
JP4870448B2 (en) 2006-02-23 2012-02-08 株式会社日立製作所 Information processing apparatus, customer needs analysis method, and program
US7593522B2 (en) 2006-03-09 2009-09-22 At&T Intellectual Property I, L.P. Call center user interface and methods of using same
US7865510B2 (en) 2006-07-12 2011-01-04 LitCentral, Inc Internet user-accessible database
BRPI0713830A2 (en) 2006-07-24 2017-10-17 Chacha Search Inc "computer readable method for controlling a computer including a guide database, computer readable memory for controlling a computer including a video and system training database"
US8050923B2 (en) 2006-09-29 2011-11-01 Verint Americas, Inc. Automated utterance search
US7752043B2 (en) 2006-09-29 2010-07-06 Verint Americas Inc. Multi-pass speech analytics
US7570755B2 (en) 2006-09-29 2009-08-04 Verint Americas Inc. Routine communication sessions for recording
US20080091423A1 (en) 2006-10-13 2008-04-17 Shourya Roy Generation of domain models from noisy transcriptions
US8364572B2 (en) 2006-11-16 2013-01-29 Protégé Partners, LLC Method and system for evaluating pricing of assets
US7577246B2 (en) 2006-12-20 2009-08-18 Nice Systems Ltd. Method and system for automatic quality evaluation
US8571853B2 (en) 2007-02-11 2013-10-29 Nice Systems Ltd. Method and system for laughter detection
US20080249764A1 (en) 2007-03-01 2008-10-09 Microsoft Corporation Smart Sentiment Classifier for Product Reviews
US7689624B2 (en) 2007-03-01 2010-03-30 Microsoft Corporation Graph-based search leveraging sentiment analysis of user comments
US7996210B2 (en) 2007-04-24 2011-08-09 The Research Foundation Of The State University Of New York Large-scale sentiment analysis
US8200527B1 (en) 2007-04-25 2012-06-12 Convergys Cmg Utah, Inc. Method for prioritizing and presenting recommendations regarding organizaion's customer care capabilities
US20090225322A1 (en) 2007-05-07 2009-09-10 Sparta, Inc. Selection of interrogation wavelengths in optical bio-detection systems
US20080300872A1 (en) 2007-05-31 2008-12-04 Microsoft Corporation Scalable summaries of audio or visual content
US20090087822A1 (en) 2007-10-02 2009-04-02 Neurolanguage Corporation Computer-based language training work plan creation with specialized english materials
US8209209B2 (en) 2007-10-02 2012-06-26 Incontact, Inc. Providing work, training, and incentives to company representatives in contact handling systems
WO2009061399A1 (en) 2007-11-05 2009-05-14 Nagaraju Bandaru Method for crawling, mapping and extracting information associated with a business using heuristic and semantic analysis
US8046220B2 (en) 2007-11-28 2011-10-25 Nuance Communications, Inc. Systems and methods to index and search voice sites
US8417713B1 (en) 2007-12-05 2013-04-09 Google Inc. Sentiment detection as a ranking signal for reviewable entities
US8010539B2 (en) 2008-01-25 2011-08-30 Google Inc. Phrase based snippet generation
US9323836B2 (en) 2008-02-11 2016-04-26 Popular Metrics, Inc. Internet based method and system for ranking artists using a popularity profile
US9122749B2 (en) 2009-02-04 2015-09-01 Popular Metrics, Inc. Internet based system and method for wagering on an artist
US7925743B2 (en) 2008-02-29 2011-04-12 Networked Insights, Llc Method and system for qualifying user engagement with a website
US20090228428A1 (en) 2008-03-07 2009-09-10 International Business Machines Corporation Solution for augmenting a master data model with relevant data elements extracted from unstructured data sources
GB2458461A (en) * 2008-03-17 2009-09-23 Kai Yu Spoken language learning system
US8463594B2 (en) 2008-03-21 2013-06-11 Sauriel Llc System and method for analyzing text using emotional intelligence factors
US8117207B2 (en) 2008-04-18 2012-02-14 Biz360 Inc. System and methods for evaluating feature opinions for products, services, and entities
US7913063B1 (en) 2008-05-02 2011-03-22 Verint Americas Inc. System and method for performance based call distribution
US8543393B2 (en) 2008-05-20 2013-09-24 Calabrio, Inc. Systems and methods of improving automated speech recognition accuracy using statistical analysis of search terms
US8452790B1 (en) 2008-06-13 2013-05-28 Ustringer LLC Method and apparatus for distributing content
US8140330B2 (en) * 2008-06-13 2012-03-20 Robert Bosch Gmbh System and method for detecting repeated patterns in dialog systems
US8965765B2 (en) * 2008-09-19 2015-02-24 Microsoft Corporation Structured models of repetition for speech recognition
US8886663B2 (en) 2008-09-20 2014-11-11 Securus Technologies, Inc. Multi-party conversation analyzer and logger
US8520808B2 (en) 2008-10-08 2013-08-27 Synchronoss Technologies System and method for robust evaluation of the user experience in automated spoken dialog systems
US8750489B2 (en) 2008-10-23 2014-06-10 International Business Machines Corporation System and method for automatic call segmentation at call center
US7974983B2 (en) 2008-11-13 2011-07-05 Buzzient, Inc. Website network and advertisement analysis using analytic measurement of online social media content
US8606815B2 (en) 2008-12-09 2013-12-10 International Business Machines Corporation Systems and methods for analyzing electronic text
JP2010181993A (en) 2009-02-04 2010-08-19 Kddi Corp Evaluation analysis server, method, and program for evaluating text file containing pictorial symbol
US8798255B2 (en) 2009-03-31 2014-08-05 Nice Systems Ltd Methods and apparatus for deep interaction analysis
JP5495602B2 (en) 2009-04-02 2014-05-21 オリンパスイメージング株式会社 Imaging apparatus and imaging method
US8166032B2 (en) 2009-04-09 2012-04-24 MarketChorus, Inc. System and method for sentiment-based text classification and relevancy ranking
US8370155B2 (en) 2009-04-23 2013-02-05 International Business Machines Corporation System and method for real time support for agents in contact center environments
US8054964B2 (en) 2009-04-30 2011-11-08 Avaya Inc. System and method for detecting emotions at different steps in a communication
US20100332287A1 (en) 2009-06-24 2010-12-30 International Business Machines Corporation System and method for real-time prediction of customer satisfaction
US8494133B2 (en) 2009-06-24 2013-07-23 Nexidia Inc. Enterprise speech intelligence analysis
US8463606B2 (en) 2009-07-13 2013-06-11 Genesys Telecommunications Laboratories, Inc. System for analyzing interactions and reporting analytic results to human-operated and system interfaces in real time
US8533208B2 (en) 2009-09-28 2013-09-10 Ebay Inc. System and method for topic extraction and opinion mining
US8880537B2 (en) 2009-10-19 2014-11-04 Gil Fuchs System and method for use of semantic understanding in storage, searching and providing of data or other content information
US8626753B1 (en) 2009-11-19 2014-01-07 Anshu Aggarwal Personalization search engine
US20130297581A1 (en) 2009-12-01 2013-11-07 Topsy Labs, Inc. Systems and methods for customized filtering and analysis of social media content collected over social networks
US8417524B2 (en) 2010-02-11 2013-04-09 International Business Machines Corporation Analysis of the temporal evolution of emotions in an audio interaction in a service delivery environment
US8412530B2 (en) 2010-02-21 2013-04-02 Nice Systems Ltd. Method and apparatus for detection of sentiment in automated transcriptions
US20110216905A1 (en) 2010-03-05 2011-09-08 Nexidia Inc. Channel compression
US8620849B2 (en) 2010-03-10 2013-12-31 Lockheed Martin Corporation Systems and methods for facilitating open source intelligence gathering
US20110238670A1 (en) 2010-03-23 2011-09-29 Microsoft Corporation Crowd-sourcing and contextual reclassification of rated content
US8880559B2 (en) 2010-04-02 2014-11-04 Brian Bartell Location activity search engine computer system
US8306814B2 (en) 2010-05-11 2012-11-06 Nice-Systems Ltd. Method for speaker source classification
US9015046B2 (en) 2010-06-10 2015-04-21 Nice-Systems Ltd. Methods and apparatus for real-time interaction analysis in call centers
US20120130771A1 (en) 2010-11-18 2012-05-24 Kannan Pallipuram V Chat Categorization and Agent Performance Modeling
US8731918B2 (en) 2011-02-23 2014-05-20 Nicesystems Ltd. Method and apparatus for automatic correlation of multi-channel interactions
US8531501B2 (en) 2011-03-01 2013-09-10 Nice-Systems Ltd. System and method for assisting an agent in a contact center
WO2012134877A2 (en) 2011-03-25 2012-10-04 Educational Testing Service Computer-implemented systems and methods evaluating prosodic features of speech
US20120253792A1 (en) 2011-03-30 2012-10-04 Nec Laboratories America, Inc. Sentiment Classification Based on Supervised Latent N-Gram Analysis
US20130018875A1 (en) 2011-07-11 2013-01-17 Lexxe Pty Ltd System and method for ordering semantic sub-keys utilizing superlative adjectives
US8463595B1 (en) 2012-03-06 2013-06-11 Reputation.Com, Inc. Detailed sentiment analysis
US10304036B2 (en) 2012-05-07 2019-05-28 Nasdaq, Inc. Social media profiling for one or more authors using one or more social media platforms
US20130325660A1 (en) 2012-05-30 2013-12-05 Auto 100 Media, Inc. Systems and methods for ranking entities based on aggregated web-based content

Patent Citations (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594919A (en) 1969-09-23 1971-07-27 Economy Co Tutoring devices
US3705271A (en) 1971-03-26 1972-12-05 Economy Co Audio tutoring device including recording capability
US4510351A (en) 1982-10-28 1985-04-09 At&T Bell Laboratories ACD Management information system
US4684349A (en) 1984-02-15 1987-08-04 Frank Ferguson Audio-visual teaching system and method
US4763353A (en) 1986-02-14 1988-08-09 American Telephone And Telegraph Company Terminal based adjunct call manager for a communication system
US4694483A (en) 1986-06-02 1987-09-15 Innings Telecom Inc. Computerized system for routing incoming telephone calls to a plurality of agent positions
US5317628A (en) 1986-07-17 1994-05-31 Efrat Future Technology Ltd. Message management system
US4815120A (en) 1987-07-28 1989-03-21 Enforcement Support Incorporated Computerized telephone monitoring system
US4924488A (en) 1987-07-28 1990-05-08 Enforcement Support Incorporated Multiline computerized telephone monitoring system
US5101402A (en) 1988-05-24 1992-03-31 Digital Equipment Corporation Apparatus and method for realtime monitoring of network sessions in a local area network
US4953159A (en) 1989-01-03 1990-08-28 American Telephone And Telegraph Company Audiographics conferencing arrangement
US5117225A (en) 1989-05-01 1992-05-26 Summit Micro Design Computer display screen monitoring system
US5016272A (en) 1989-06-16 1991-05-14 Stubbs James R Home video system
EP0453128A2 (en) 1990-04-12 1991-10-23 AT&T Corp. Multiple call control method in a multimedia conferencing system
US5311422A (en) 1990-06-28 1994-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration General purpose architecture for intelligent computer-aided training
US5388252A (en) 1990-09-07 1995-02-07 Eastman Kodak Company System for transparent monitoring of processors in a network with display of screen images at a remote station for diagnosis by technical support personnel
US5835572A (en) 1990-10-01 1998-11-10 United States Advanced Network, Inc. Customized, billing controlled call bridging system
US5299260A (en) 1990-11-20 1994-03-29 Unifi Communications Corporation Telephone call handling system
US5241625A (en) 1990-11-27 1993-08-31 Farallon Computing, Inc. Screen image sharing among heterogeneous computers
US5239460A (en) 1991-01-03 1993-08-24 At&T Bell Laboratories Arrangement for motivating telemarketing agents
US5475625A (en) 1991-01-16 1995-12-12 Siemens Nixdorf Informationssysteme Aktiengesellschaft Method and arrangement for monitoring computer manipulations
US5577112A (en) 1991-05-28 1996-11-19 Davox Corporation Telephony system with supervisory management center and parameter testing with alerts
US5210789A (en) 1991-06-28 1993-05-11 International Telecharge, Inc. Interactive telephone operator terminal
US5315711A (en) 1991-11-01 1994-05-24 Unisys Corporation Method and apparatus for remotely and centrally controlling a plurality of host processors
US5267865A (en) 1992-02-11 1993-12-07 John R. Lee Interactive computer aided natural learning method and apparatus
US5432715A (en) 1992-06-29 1995-07-11 Hitachi, Ltd. Computer system and monitoring method
US5491780A (en) 1992-09-15 1996-02-13 International Business Machines Corporation System and method for efficient computer workstation screen updates
US5485569A (en) 1992-10-20 1996-01-16 Hewlett-Packard Company Method and apparatus for monitoring display screen events in a screen-oriented software application too
US5499291A (en) 1993-01-14 1996-03-12 At&T Corp. Arrangement for automating call-center agent-schedule-notification and schedule-adherence functions
US5535256A (en) 1993-09-22 1996-07-09 Teknekron Infoswitch Corporation Method and system for automatically monitoring the performance quality of call center service representatives
US6058163A (en) 1993-09-22 2000-05-02 Teknekron Infoswitch Corporation Method and system for monitoring call center service representatives
US6583806B2 (en) 1993-10-01 2003-06-24 Collaboration Properties, Inc. Videoconferencing hardware
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5396371A (en) 1993-12-21 1995-03-07 Dictaphone Corporation Endless loop voice data storage and retrievable apparatus and method thereof
US5572652A (en) 1994-04-04 1996-11-05 The United States Of America As Represented By The Secretary Of The Navy System and method for monitoring and controlling one or more computer sites
US5597312A (en) 1994-05-04 1997-01-28 U S West Technologies, Inc. Intelligent tutoring method and system
US5465286A (en) 1994-05-24 1995-11-07 Executone Information Systems, Inc. Apparatus for supervising an automatic call distribution telephone system
US5784452A (en) 1994-06-01 1998-07-21 Davox Corporation Telephony call center with agent work groups
US5590171A (en) 1994-07-07 1996-12-31 Bellsouth Corporation Method and apparatus for communications monitoring
US6130668A (en) 1994-07-25 2000-10-10 Apple Computer, Inc. Supervisory control system for networked multimedia workstations that provides simultaneous observation of multiple remote workstations
US5619183A (en) 1994-09-12 1997-04-08 Richard C. Ziegra Video audio data remote system
US5982857A (en) 1994-10-17 1999-11-09 Apropros Technology Voice recording method and system providing context specific storage and retrieval
US6244758B1 (en) 1994-11-15 2001-06-12 Absolute Software Corp. Apparatus and method for monitoring electronic devices via a global network
US6091712A (en) 1994-12-23 2000-07-18 Applied Digital Access, Inc. Method and apparatus for storing and retrieving performance data collected by a network interface unit
US5742670A (en) 1995-01-09 1998-04-21 Ncr Corporation Passive telephone monitor to control collaborative systems
US5696906A (en) 1995-03-09 1997-12-09 Continental Cablevision, Inc. Telecommunicaion user account management system and method
US5825869A (en) 1995-04-24 1998-10-20 Siemens Business Communication Systems, Inc. Call management method and system for skill-based routing
US5721842A (en) 1995-08-25 1998-02-24 Apex Pc Solutions, Inc. Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch
US5748499A (en) 1995-09-19 1998-05-05 Sony Corporation Computer graphics data recording and playback system with a VCR-based graphic user interface
US5884032A (en) 1995-09-25 1999-03-16 The New Brunswick Telephone Company, Limited System for coordinating communications via customer contact channel changing system using call centre for setting up the call between customer and an available help agent
US6122668A (en) 1995-11-02 2000-09-19 Starlight Networks Synchronization of audio and video signals in a live multicast in a LAN
US5717879A (en) 1995-11-03 1998-02-10 Xerox Corporation System for the capture and replay of temporal data representing collaborative activities
EP0773687A2 (en) 1995-11-07 1997-05-14 AT&T Corp. Usage management sytem
US5778182A (en) 1995-11-07 1998-07-07 At&T Corp. Usage management system
US6072860A (en) 1996-01-16 2000-06-06 Global Tel*Link Corp. Telephone apparatus with recording of phone conversations on massive storage
US6061798A (en) 1996-02-06 2000-05-09 Network Engineering Software, Inc. Firewall system for protecting network elements connected to a public network
US6225993B1 (en) 1996-04-22 2001-05-01 Sun Microsystems, Inc. Video on demand applet method and apparatus for inclusion of motion video in multimedia documents
US6201948B1 (en) 1996-05-22 2001-03-13 Netsage Corporation Agent based instruction system and method
US6018619A (en) 1996-05-24 2000-01-25 Microsoft Corporation Method, system and apparatus for client-side usage tracking of information server systems
US5790798A (en) 1996-05-31 1998-08-04 Witness Systems, Inc. Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location
US6510220B1 (en) 1996-05-31 2003-01-21 Witness Systems, Inc. Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location
US6370574B1 (en) 1996-05-31 2002-04-09 Witness Systems, Inc. Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location
US5907680A (en) 1996-06-24 1999-05-25 Sun Microsystems, Inc. Client-side, server-side and collaborative spell check of URL's
US5862330A (en) 1996-07-16 1999-01-19 Lucent Technologies Inc. Technique for obtaining and exchanging information on wolrd wide web
US5991796A (en) 1996-07-16 1999-11-23 Lucent Technologies Inc. Technique for obtaining and exchanging information on world wide web
US6157808A (en) 1996-07-17 2000-12-05 Gpu, Inc. Computerized employee certification and training system
US5809247A (en) 1996-07-22 1998-09-15 Intel Corporation Method and apparatus for guided touring of internet/intranet websites
US5933811A (en) 1996-08-20 1999-08-03 Paul D. Angles System and method for delivering customized advertisements within interactive communication systems
US6014134A (en) 1996-08-23 2000-01-11 U S West, Inc. Network-based intelligent tutoring system
US5923746A (en) 1996-09-18 1999-07-13 Rockwell International Corp. Call recording system and method for use with a telephonic switch
US6146148A (en) 1996-09-25 2000-11-14 Sylvan Learning Systems, Inc. Automated testing and electronic instructional delivery and student management system
US6757361B2 (en) 1996-09-26 2004-06-29 Eyretel Limited Signal monitoring apparatus analyzing voice communication content
US6404857B1 (en) 1996-09-26 2002-06-11 Eyretel Limited Signal monitoring apparatus for analyzing communications
US5944791A (en) 1996-10-04 1999-08-31 Contigo Software Llc Collaborative web browser
US6487195B1 (en) 1996-10-23 2002-11-26 Ncr Corporation Collaborative network navigation synchronization mechanism
US5809250A (en) 1996-10-23 1998-09-15 Intel Corporation Methods for creating and sharing replayable modules representive of Web browsing session
US6039575A (en) 1996-10-24 2000-03-21 National Education Corporation Interactive learning system with pretest
US5918214A (en) 1996-10-25 1999-06-29 Ipf, Inc. System and method for finding product and service related information on the internet
US5948061A (en) 1996-10-29 1999-09-07 Double Click, Inc. Method of delivery, targeting, and measuring advertising over networks
US5990852A (en) 1996-10-31 1999-11-23 Fujitsu Limited Display screen duplication system and method
US5864772A (en) 1996-12-23 1999-01-26 Schlumberger Technology Corporation Apparatus, system and method to transmit and display acquired well data in near real time at a remote location
US6057841A (en) 1997-01-31 2000-05-02 Microsoft Corporation System and method for processing electronic messages with rules representing a combination of conditions, actions or exceptions
US5978648A (en) 1997-03-06 1999-11-02 Forte Systems, Inc. Interactive multimedia performance assessment system and process for use by students, educators and administrators
US5796952A (en) 1997-03-21 1998-08-18 Dot Com Development, Inc. Method and apparatus for tracking client interaction with a network resource and creating client profiles and resource database
US6301573B1 (en) 1997-03-21 2001-10-09 Knowlagent, Inc. Recurrent training system
US6078894A (en) 1997-03-28 2000-06-20 Clawson; Jeffrey J. Method and system for evaluating the performance of emergency medical dispatchers
US6560328B1 (en) 1997-04-03 2003-05-06 Genesys Telecommunications Laboratories, Inc. Voice extensions in a call-in center employing virtual restructuring for computer telephony integrated functionality
US6502131B1 (en) 1997-05-27 2002-12-31 Novell, Inc. Directory enabled policy management tool for intelligent traffic management
US6171109B1 (en) 1997-06-18 2001-01-09 Adin Research, Inc. Method for generating a multi-strata model and an intellectual information processing device
US6282548B1 (en) 1997-06-21 2001-08-28 Alexa Internet Automatically generate and displaying metadata as supplemental information concurrently with the web page, there being no link between web page and metadata
US6182094B1 (en) 1997-06-25 2001-01-30 Samsung Electronics Co., Ltd. Programming tool for home networks with an HTML page for a plurality of home devices
US6014647A (en) 1997-07-08 2000-01-11 Nizzari; Marcia M. Customer interaction tracking
US5958016A (en) 1997-07-13 1999-09-28 Bell Atlantic Network Services, Inc. Internet-web link for access to intelligent network service control
US6173437B1 (en) * 1997-07-24 2001-01-09 Intervoice Limited Partnership Multimedia scripting tool
US6076099A (en) 1997-09-09 2000-06-13 Chen; Thomas C. H. Method for configurable intelligent-agent-based wireless communication system
US5964836A (en) 1997-09-11 1999-10-12 International Business Machines Corporation Apparatus, methods and computer program products for managing web-page-embedded sessions with a host-based application
US5991373A (en) 1997-09-15 1999-11-23 Teknekron Infoswitch Corporation Reproduction of a voice and video session
US6035332A (en) 1997-10-06 2000-03-07 Ncr Corporation Method for monitoring user interactions with web pages from web server using data and command lists for maintaining information visited and issued by participants
US6418471B1 (en) 1997-10-06 2002-07-09 Ncr Corporation Method for recording and reproducing the browsing activities of an individual web browser
US6546405B2 (en) 1997-10-23 2003-04-08 Microsoft Corporation Annotating temporally-dimensioned multimedia content
US6351467B1 (en) 1997-10-27 2002-02-26 Hughes Electronics Corporation System and method for multicasting multimedia content
US6009429A (en) 1997-11-13 1999-12-28 International Business Machines Corporation HTML guided web tour
US5987466A (en) 1997-11-25 1999-11-16 International Business Machines Corporation Presenting web pages with discrete, browser-controlled complexity levels
US6286046B1 (en) 1997-12-22 2001-09-04 International Business Machines Corporation Method of recording and measuring e-business sessions on the world wide web
US6005932A (en) 1997-12-24 1999-12-21 Rockwell Semiconductor Systems Inc. Dynamic schedule profiler for ACD
US6195679B1 (en) 1998-01-06 2001-02-27 Netscape Communications Corporation Browsing session recording playback and editing system for generating user defined paths and allowing users to mark the priority of items in the paths
US6211451B1 (en) 1998-01-29 2001-04-03 Yamaha Corporation Music lesson system with local training terminal and remote supervisory station
US6151622A (en) 1998-02-02 2000-11-21 International Business Machines Corp. Method and system for portably enabling view synchronization over the world-wide web using frame hierarchies
US6144991A (en) 1998-02-19 2000-11-07 Telcordia Technologies, Inc. System and method for managing interactions between users in a browser-based telecommunications network
US6038544A (en) 1998-02-26 2000-03-14 Teknekron Infoswitch Corporation System and method for determining the performance of a user responding to a call
US20010043697A1 (en) 1998-05-11 2001-11-22 Patrick M. Cox Monitoring of and remote access to call center activity
US6154771A (en) 1998-06-01 2000-11-28 Mediastra, Inc. Real-time receipt, decompression and play of compressed streaming video/hypervideo; with thumbnail display of past scenes and with replay, hyperlinking and/or recording permissively intiated retrospectively
US6347374B1 (en) 1998-06-05 2002-02-12 Intrusion.Com, Inc. Event detection
US20010000962A1 (en) 1998-06-26 2001-05-10 Ganesh Rajan Terminal for composing and presenting MPEG-4 video programs
US6286030B1 (en) 1998-07-10 2001-09-04 Sap Aktiengesellschaft Systems and methods for recording and visually recreating sessions in a client-server environment
US6871229B2 (en) 1998-08-26 2005-03-22 Sts Software Systems Ltd. Method for storing on a computer network a portion of a communication session between a packet source and a packet destination
US6122665A (en) 1998-08-26 2000-09-19 Sts Software System Ltd. Communication management system for computer network-based telephones
EP0989720A1 (en) 1998-08-27 2000-03-29 France Telecom Telephone apparatus for a prison medium
US6493758B1 (en) 1998-09-08 2002-12-10 Microsoft Corporation Offline viewing of internet content with a mobile device
US6108711A (en) 1998-09-11 2000-08-22 Genesys Telecommunications Laboratories, Inc. Operating system having external media layer, workflow layer, internal media layer, and knowledge base for routing media events between transactions
US6230197B1 (en) 1998-09-11 2001-05-08 Genesys Telecommunications Laboratories, Inc. Method and apparatus for rules-based storage and retrieval of multimedia interactions within a communication center
US6138139A (en) 1998-10-29 2000-10-24 Genesys Telecommunications Laboraties, Inc. Method and apparatus for supporting diverse interaction paths within a multimedia communication center
US6360250B1 (en) 1998-12-28 2002-03-19 Lucent Technologies Inc. Apparatus and method for sharing information in simultaneously viewed documents on a communication system
US6353851B1 (en) 1998-12-28 2002-03-05 Lucent Technologies Inc. Method and apparatus for sharing asymmetric information and services in simultaneously viewed documents on a communication system
US6411989B1 (en) 1998-12-28 2002-06-25 Lucent Technologies Inc. Apparatus and method for sharing information in simultaneously viewed documents on a communication system
US6236977B1 (en) 1999-01-04 2001-05-22 Realty One, Inc. Computer implemented marketing system
US6301462B1 (en) 1999-01-15 2001-10-09 Unext. Com Online collaborative apprenticeship
US20020128821A1 (en) 1999-05-28 2002-09-12 Farzad Ehsani Phrase-based dialogue modeling with particular application to creating recognition grammars for voice-controlled user interfaces
US6606657B1 (en) 1999-06-22 2003-08-12 Comverse, Ltd. System and method for processing and presenting internet usage information
US6288753B1 (en) 1999-07-07 2001-09-11 Corrugated Services Corp. System and method for live interactive distance learning
US6289340B1 (en) 1999-08-03 2001-09-11 Ixmatch, Inc. Consultant matching system and method for selecting candidates from a candidate pool by adjusting skill values
US6665644B1 (en) 1999-08-10 2003-12-16 International Business Machines Corporation Conversational data mining
US6772396B1 (en) 1999-10-07 2004-08-03 Microsoft Corporation Content distribution system for network environments
US6823384B1 (en) 1999-10-15 2004-11-23 James Wilson Methods and apparatus for securely collecting customer service agent data in a multi-tenant environment
US6792575B1 (en) 1999-10-21 2004-09-14 Equilibrium Technologies Automated processing and delivery of media to web servers
US20070150275A1 (en) 1999-10-28 2007-06-28 Canon Kabushiki Kaisha Pattern matching method and apparatus
US7310600B1 (en) 1999-10-28 2007-12-18 Canon Kabushiki Kaisha Language recognition using a similarity measure
US7295980B2 (en) 1999-10-28 2007-11-13 Canon Kabushiki Kaisha Pattern matching method and apparatus
US6901438B1 (en) 1999-11-12 2005-05-31 Bmc Software System selects a best-fit form or URL in an originating web page as a target URL for replaying a predefined path through the internet
US20100005081A1 (en) 1999-11-12 2010-01-07 Bennett Ian M Systems for natural language processing of sentence based queries
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US6820083B1 (en) 1999-12-06 2004-11-16 Interface Software, Inc. Relationship management system that limits access of contact information to particular folders
US6674447B1 (en) 1999-12-06 2004-01-06 Oridus, Inc. Method and apparatus for automatically recording snapshots of a computer screen during a computer session for later playback
US6959078B1 (en) 2000-01-24 2005-10-25 Verint Systems Inc. Apparatus and method for monitoring and adapting to environmental factors within a contact center
US6724887B1 (en) 2000-01-24 2004-04-20 Verint Systems, Inc. Method and system for analyzing customer communications with a contact center
GB2369263A (en) 2000-01-24 2002-05-22 Comverse Infosys Inc Information retrieval from a contact centre over a wide area network
US6810414B1 (en) 2000-02-04 2004-10-26 Dennis A. Brittain System and methods for easy-to-use periodic network data capture engine with automatic target data location, extraction and storage
US6542602B1 (en) 2000-02-14 2003-04-01 Nice Systems Ltd. Telephone call monitoring system
US20040165717A1 (en) 2000-03-02 2004-08-26 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6324282B1 (en) 2000-03-02 2001-11-27 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6459787B2 (en) 2000-03-02 2002-10-01 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US20010032335A1 (en) 2000-03-03 2001-10-18 Jones Lawrence R. Picture communications system and associated network services
US6683633B2 (en) 2000-03-20 2004-01-27 Incontext Enterprises, Inc. Method and system for accessing information
US6697858B1 (en) 2000-08-14 2004-02-24 Telephony@Work Call center
US20020052948A1 (en) 2000-09-13 2002-05-02 Imedication S.A. A French Corporation Method and system for managing network-based partner relationships
US20020038363A1 (en) 2000-09-28 2002-03-28 Maclean John M. Transaction management system
US20020065911A1 (en) 2000-10-03 2002-05-30 Von Klopp Ana H. HTTP transaction monitor with edit and replay capacity
US20020065912A1 (en) 2000-11-30 2002-05-30 Catchpole Lawrence W. Web session collaboration
US7170979B1 (en) * 2000-12-08 2007-01-30 Ben Franklin Patent Holding Llc System for embedding programming language content in voiceXML
US20020128925A1 (en) 2000-12-11 2002-09-12 Patrick Angeles system and method for detecting and reporting online activity using real-time content-based network monitoring
US20020143925A1 (en) 2000-12-29 2002-10-03 Ncr Corporation Identifying web-log data representing a single user session
US20030055883A1 (en) 2001-03-30 2003-03-20 Wiles Philip V. Synthetic transaction monitor
US20020165954A1 (en) 2001-05-04 2002-11-07 Kave Eshghi System and method for monitoring browser event activities
US7953219B2 (en) 2001-07-19 2011-05-31 Nice Systems, Ltd. Method apparatus and system for capturing and analyzing interaction based content
US20040100507A1 (en) 2001-08-24 2004-05-27 Omri Hayner System and method for capturing browser sessions and user actions
US6738456B2 (en) 2001-09-07 2004-05-18 Ronco Communications And Electronics, Inc. School observation and supervisory system
US6775377B2 (en) 2001-09-10 2004-08-10 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6870916B2 (en) 2001-09-14 2005-03-22 Lucent Technologies Inc. Targeted and intelligent multimedia conference establishment services
US20030079020A1 (en) 2001-10-23 2003-04-24 Christophe Gourraud Method, system and service provider for IP media program transfer-and-viewing-on-demand
US6965886B2 (en) 2001-11-01 2005-11-15 Actimize Ltd. System and method for analyzing and utilizing data, by executing complex analytical models in real time
US20030099335A1 (en) * 2001-11-28 2003-05-29 Nobuaki Tanaka Interactive voice response system that enables an easy input in menu option selection
US20030144900A1 (en) 2002-01-28 2003-07-31 Whitmer Michael L. Method and system for improving enterprise performance
US20030154240A1 (en) 2002-02-08 2003-08-14 E-Talk Corporation System and method for implementing recording plans using a session manager
US20030204404A1 (en) * 2002-04-25 2003-10-30 Weldon Phyllis Marie Dyer Systems, methods and computer program products for designing, deploying and managing interactive voice response (IVR) systems
US7590542B2 (en) * 2002-05-08 2009-09-15 Douglas Carter Williams Method of generating test scripts using a voice-capable markup language
US20040062364A1 (en) * 2002-09-27 2004-04-01 Rockwell Electronic Commerce Technologies, L.L.C. Method selecting actions or phases for an agent by analyzing conversation content and emotional inflection
US20060080107A1 (en) 2003-02-11 2006-04-13 Unveil Technologies, Inc., A Delaware Corporation Management of conversations
US20050108518A1 (en) 2003-06-10 2005-05-19 Pandya Ashish A. Runtime adaptable security processor
US20050133565A1 (en) 2003-11-27 2005-06-23 Hong-Ro Lee Laser annealing apparatus for processing semiconductor devices in inline manner
US20080235018A1 (en) 2004-01-20 2008-09-25 Koninklikke Philips Electronic,N.V. Method and System for Determing the Topic of a Conversation and Locating and Presenting Related Content
US20060188075A1 (en) 2005-02-22 2006-08-24 Bbnt Solutions Llc Systems and methods for presenting end to end calls and associated information
US7706520B1 (en) 2005-11-08 2010-04-27 Liveops, Inc. System and method for facilitating transcription of audio recordings, with auditing
US8112306B2 (en) 2006-02-22 2012-02-07 Verint Americas, Inc. System and method for facilitating triggers and workflows in workforce optimization
US7991613B2 (en) 2006-09-29 2011-08-02 Verint Americas Inc. Analyzing audio components and generating text with integrated additional session information
US20090327279A1 (en) 2008-06-25 2009-12-31 International Business Machines Corporation Apparatus and method for supporting document data search
US20100098225A1 (en) 2008-10-17 2010-04-22 Commonwealth Intellectual Property Holdings, Inc. Intuitive voice navigation
US20100104087A1 (en) 2008-10-27 2010-04-29 International Business Machines Corporation System and Method for Automatically Generating Adaptive Interaction Logs from Customer Interaction Text
US20100161315A1 (en) 2008-12-24 2010-06-24 At&T Intellectual Property I, L.P. Correlated call analysis

Non-Patent Citations (126)

* Cited by examiner, † Cited by third party
Title
"Customer Spotlight: Navistar International," Web page, unverified print date of Apr. 1, 2002.
"Hong Kong Comes First with Interactive TV", SCI-TECH, Dec. 4, 1997.
"Interactive TV Overview Timeline", Interactive TV News.
"Interactive TV Wars Heat Up", Industry Standard.
"Keeping an Eye on Your Agents," Call Center Magazine, pp. 32-34, Feb. 1993 LPRs & 798.
"NICE and Cisco ICM/IPCC integration", (Feb. 2003). http://www.cisco.com/en/US/solutions/collateral/ns340/ns394/ns165/ns45/ns14/net-brochure09186a00800a3292.pdf.
"NICE announces the next generation of active VoIP recording solutions", Press Release, NICE Systems, Mar. 14, 2006. http://www.nice.com/news/show-pr.php?id=581.
"NICE Systems announces interoperability of its VoIP recording technology with Cisco Systems' customer contact software platform", Business Wire, Jul. 3, 2001. http://findarticles.com/p/articles/mi-m0EIN/is-2001-July-3/ai-76154034.
"OnTrack Online" Delivers New Web Functionality, Web page, unverified print date of Apr. 2, 2002, unverified cover date of Oct. 5, 1999.
"Price Waterhouse Coopers Case Study: The Business Challenge," Web page, unverified cover date of 2000.
"Setting up switched port analyzer for monitoring and recording IP-ICD agents on the Cisco ICS 7750", Cisco Systems, Nov. 22, 2002. http://www.cisco.com/en/US/docs/routers/access/ics7750/software/notes/icsspan.html.
Abstract, net.working: "An Online Webliography," Technical Training pp. 4-5 (Nov./Dec. 1998).
Adams et al., "Our Turn-of-the-Century Trend Watch" Technical Training, pp. 46-47 (Nov./Dec. 1998).
Anderson: Interactive TVs New Approach, The Standard, Oct. 1, 1999.
Ante, "Everything You Ever Wanted to Know About Cryptography Legislation . . . (But Were too Sensible to Ask)", PC World Online, Dec. 14, 1999.
Aspect Call Center Product Specification, "Release 2.0", Aspect Telecommunications Corporation, May 23, 1998, 798.
Barron, "The Road to Performance: Three Vignettes," Technical Skills and Training, pp. 12-14 (Jan. 1997).
Bauer, "Technology Tools: Just-in-Time Desktop Training is Quick, Easy, and Affordable," Technical Training, pp. 8-11 (May/Jun. 1998).
Beck et al., "Applications of AI in Education," AMC Crossroads vol. 1:1-13 (Fall 1996), Web page, unverified print date of Apr. 12, 2002.
Benson and Cheney, "Best Practices in Training Delivery," Technical Training pp. 14-17 (Oct. 1996).
Bental and Cawsey, "Personalized and Adaptive Systems for Medical Consumer Applications," Communications ACM 45(5):62-63 (May 2002).
Benyon and Murray, "Adaptive Systems: from intelligent tutoring to autonomous agents," pp. 1-52, Web page, unknown date.
Berst, "It's Baa-aack. How Interactive TV is Sneaking Into Your Living Room", The AnchorDesk, May 10, 1999.
Berst, "Why Interactive TV Won't Turn You On (Yet)", The AnchorDesk, Jul. 13, 1999.
Blumenthal et al., "Reducing Development Costs with Intelligent Tutoring System Shells," pp. 1-5, Web page, unverified print date of Apr. 9, 2002, unverified cover date of Jun. 10, 1996.
Borland and Davis, "US West Plans Web Services on TV", CNETNews.com, Nov. 22, 1999.
Brown, "Interactive TV: The Sequel", NewMedia, Feb. 10, 1998.
Brown, "Let PC Technology Be Your TV Guide", PC Magazine, Jun. 7, 1999.
Brusilovsky and Pesin, ISIS-Tutor: An Intelligent Learning Environment for CD/ISIS Users, @pp. 1-15 Web page, unverified print date of May 2, 2002.
Brusilovsky et al., "Distributed intelligent tutoring on the Web," Proceedings of the 8th World Conference of the AIED Society, Kobe, Japan, Aug. 18-22, pp. 1-9 Web page, unverified print date of Apr. 12, 2002, unverified cover date of Aug. 18-22, 1997.
Brusilovsky, "Adaptive Educational Systems on the World-Wide-Web: A Review of Available Technologies," pp. 1-10, Web Page, unverified print date of Apr. 12, 2002.
Byrnes et al., "The Development of a Multiple-Choice and True-False Testing Environment on the Web," pp. 1-8, Web page, unverified print date Apr. 12, 2002, unverified cover date of 1995.
Calvi and De Bra, "Improving the Usability of Hypertext Courseware through Adaptive Linking," ACM, unknown page numbers (1997).
Cline, "Deja vu—Will Interactive TV Make It This Time Around?", DevHead, Jul. 9, 1999.
Coffey, "Are Performance Objectives Really Necessary?" Technical Skills and Training pp. 25-27 (Oct. 1995).
Cohen, "Knowledge Management's Killer App," pp. 1-11, Web page, unverified print date of Apr. 12, 2002, unverified cover date of 2001.
Cole-Gomolski, "New ways to manage E-Classes," Computerworld 32(48):4344 (Nov. 30, 1998).
Cross, "Sun Microsystems-the SunTAN Story," Internet Time Group 8 (2001).
Crouch, "TV Channels on the Web", PC World, Sep. 15, 1999.
Cybulski and Linden, "Teaching Systems Analysis and Design Using Multimedia and Patterns," unknown date, unknown source.
D'Amico, "Interactive TV Gets $99 set-top box", IDG.net, Oct. 6, 1999.
Davis, "Satellite Systems Gear Up for Interactive TV Fight", CNETNews.com, Sep. 30, 1999.
De Bra et al., "Adaptive Hypermedia: From Systems to Framework," ACM (2000).
De Bra, "Adaptive Educational Hypermedia on the Web," Communications ACM 45(5):60-61 (May 2002).
Dennis and Gruner, "Computer Managed Instruction at Arthur Andersen & Company: A Status Report," Educational Technical, pp. 7-16 (Mar. 1992).
Diederich, "Web TV Data Gathering Raises Privacy Concerns", ComputerWorld, Oct. 13, 1998.
Diessel et al., "Individualized Course Generation: A Marriage Between CAL and ICAL," Computers Educational 22(1/2) 57-64 (1994).
Digital Broadcasting, Interactive TV News.
DKSystems Integrates QM Perception with OnTrack for Training, Web page, unverified print date of Apr. 1, 2002, unverified cover date of Jun. 15, 1999.
Dyreson, "An Experiment in Class Management Using the World-Wide Web," pp. 1-12, Web page, unverified print date of Apr. 12, 2002.
E Learning Community, "Excellence in Practice Award: Electronic Learning Technologies," Personal Learning Network pp. 1-11, Web page, unverified print date of Apr. 12, 2002.
EchoStar, "MediaX Mix Interactive Multimedia With Interactive Television", PRNews Wire, Jan. 11, 1999.
Eklund and Brusilovsky, "The Value of Adaptivity in Hypermedia Learning Environments: A Short Review of Empirical Evidence," pp. 1-8, Web page, unverified print date of May 2, 2002.
e-Learning the future of learning, THINQ Limited, London, Version 1.0 (2000).
Eline, "A Trainer's Guide to Skill Building," Technical Training pp. 34-41 (Sep./Oct. 1998).
Eline, "Case Study: Bridging the Gap in Canada's IT Skills," Technical Skills and Training pp. 23-25 (Jul. 1997).
Eline, "Case Study: IBT's Place in the Sun," Technical Training pp. 12-17 (Aug./Sep. 1997).
Fritz, "CB templates for productivity: Authoring system templates for trainers," Emedia Professional 10(8):6876 (Aug. 1997).
Fritz, "ToolBook II: Asymetrix's updated authoring software tackles the Web," Emedia Professional 10(2):102106 (Feb. 1997).
Furger, "The Internet Meets the Couch Potato", PCWorld, Oct. 1996.
Gibson et al., "A Comparative Analysis of Web-Based Testing and Evaluation Systems," pp. 1-8, Web page, unverified print date of Apr. 11, 2002.
Hallberg and DeFlore, "Curving Toward Performance: Following a Hierarchy of Steps Toward a Performance Orientation," Technical Skills and Training pp. 9-11 (Jan. 1997).
Harsha, "Online Training "Sprints" Ahead," Technical Training pp. 27-29 (Jan./Feb. 1999).
Heideman, "Training Technicians for a High-Tech Future: These six steps can help develop technician training for high-tech work," pp. 11-14 (Feb./Mar. 1995).
Heideman, "Writing Performance Objectives Simple as A-B-C (and D)," Technical Skills and Training pp. 5-7 (May/Jun. 1996).
Hollman, "Train Without Pain: The Benefits of Computer-Based Training Tools," pp. 1-11, Web page, unverified print date of Mar. 20, 2002, unverified cover date of Jan. 1, 2000.
Interview with Steve Perlman, CEO of Web-TV Networks, PC World Online.
Kane, AOL-Tivo: You've Got Interactive TV, ZDNN, Aug. 17, 1999.
Kay, "E-Mail in Your Kitchen", PC World Online, Mar. 28, 1996.
Kenny, "TV Meets Internet", PC World Online, Mar. 28, 1996.
Koonce, "Where Technology and Training Meet," Technical Training pp. 10-15 (Nov./Dec. 1998).
Kursh, "Going the distance with Web-based training," Training and Development 52(3):5053 (Mar. 1998).
Larson, "Enhancing Performance Through Customized Online Learning Support," Technical Skills and Training pp. 25-27 (May/Jun. 1997).
Linderholm, "Avatar Debuts Home Theater PC", PC World Online, Dec. 1, 1999.
Linton et al., "OWL: A Recommender System for Organization-Wide Learning," Educational Technical Society 3 (1):62-76 (2000).
Lucadamo and Cheney, "Best Practices in Technical Training," Technical Training pp. 21-26 (Oct. 1997).
McNamara, "Monitoring Solutions: Quality Must Be Seen and Heard," Inbound/Outbound pp. 66-67 (Dec. 1989).
Mendoza, "Order Pizza While You Watch", ABCNews.com.
Merrill, "The New Component Design Theory: Instruction design for courseware authoring," Instructional Science 16:19-34 (1987).
Metheus X Window Record and Playback, XRP Features and Benefits, 2 pages, Sep. 1994 LPRs.
Minton-Eversole, "IBT Training Truths Behind the Hype," Technical Skills and Training pp. 15-19 (Jan. 1997).
Mizoguchi, "Intelligent Tutoring Systems: The Current State of the Art," Trans. IEICE E73(3):297-307 (Mar. 1990).
Moody, "WebTV: What the Big Deal?", ABCNews.com.
Mostow and Aist, "The Sounds of Silence: Towards Automated Evaluation of Student Learning a Reading Tutor that Listens" American Association for Artificial Intelligence, Web page, unknown date Aug. 1997.
Mullier et al., "A Web base Intelligent Tutoring System," pp. 1-6, Web page, unverified print date of May 2, 2002.
Murdorf et al., "Interactive Television-Is There Life After the Internet?", Interactive TV News.
Nash, Database Marketing, 1993, pp. 158-165, 172-185, McGraw Hill, Inc., USA.
Needle, "PC, TV or Both?", PC World Online.
Needle, "Will The Net Kill Network TV?" PC World Online, Mar. 10, 1999.
Nelson et al., "The Assessment of End-User Training Needs," Communications ACM 38(7):27-39 (Jul. 1995).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 6, 2008.
Official U.S. Office Action, dated May 22, 2013, issued in related U.S. Appl. No. 13/215,192.
Official U.S. Official Action, dated Feb. 1, 2013, issued in related U.S. Appl. No. 12/779,202.
O'Herron, "CenterForce Technologies' CenterForce Analyzer," Web page, unverified print date of Mar. 20, 2002, unverified cover date of Jun. 1, 1999.
O'Roark, "Basic Skills Get a Boost," Technical Training pp. 10-13 (Jul./Aug. 1998).
Pamphlet, "On Evaluating Educational Innovations," authored by Alan Lesgold, unverified cover date of Mar. 5, 1998.
Papa et al., "A Differential Diagnostic Skills Assessment and Tutorial Tool," Computer Education 18(1-3):45-50 (1992).
PCT International Search Report, International Application No. PCT/US03/02541, mailed May 12, 2003.
Phaup, "New Software Puts Computerized Tests on the Internet: Presence Corporation announces breakthrough Question Mark Web product," Web page, unverified print date of Apr. 1, 2002.
Phaup, "QM Perception Links with Integrity Training's WBT Manager to Provide Enhanced Assessments for Web-Based Courses," Web page, unverified print date of Apr. 1, 2002, unverified cover date of Mar. 25, 1999.
Phaup, "Question Mark Introduces Access Export Software," Web page, unverified print date of Apr. 2, 2002, unverified cover date of Mar. 1, 1997.
Phaup, "Question Mark Offers Instant Online Feedback for Web Quizzes and Questionnaires: University of California assist with Beta Testing, Server scripts now available to high-volume users," Web page, unverified print date of Apr. 1, 2002, unverified cover date of May, 6, 1996.
Piskurich, "Now-You-See-'Em, Now-You-Don't Learning Centers," Technical Training pp. 18-21 (Jan./Feb. 1999).
Press, Two Cultures, The Internet and Interactive TV, Universite de Montreal.
Read, "Sharpening Agents' Skills," pp. 1-15, Web page, unverified print date of Mar. 20, 2002, unverified cover date of Oct. 1, 1999.
Reid, "On Target: Assessing Technical Skills," Technical Skills and Training pp. 6-8 (May/Jun. 1995).
Reuters, "Will TV Take Over Your PC?", PC World Online.
Rohde, "Gates Touts Interactive TV", InfoWorld, Oct. 14, 1999.
Ross, "Broadcasters Use TV Signals to Send Data", PC World, Oct. 1996.
Schlisserman, "Is Web TV a Lethal Weapon?", PC World Online.
Stewart, "Interactive Television at Home: Television Meets the Internet", Aug. 1998.
Stormes, "Case Study: Restructuring Technical Training Using ISD," Technical Skills and Training pp. 23-26 (Feb./Mar. 1997).
Swedlow, "Computer TV Shows: Ready for Prime Time?", PC World Online.
Tennyson, "Artificial Intelligence Methods in Computer-Based Instructional Design," Journal of Instruction Development 7(3):17-22 (1984).
The Editors, Call Center, "The Most Innovative Call Center Products We Saw in 1999," Web page, unverified print date of Mar. 20, 2002, unverified cover date of Feb. 1, 2000.
Tinoco et al., "Online Evaluation in WWW-based Courseware," ACM pp. 194-198 (1997).
U.S. Official Action dated May 4, 2012 in U.S. Appl. No. 12/337,402.
U.S. Official Action dated Oct. 24, 2012 in U.S. Appl. No. 12/337,402.
Uiterwijk et al., "The virtual classroom," InfoWorld 20(47):6467 (Nov. 23, 1998).
Unknown Author, "Long-distance learning," InfoWorld 20(36):7276 (1998).
Untitled, 10th Mediterranean Electrotechnical Conference vol. 1 pp. 124-126 (2000).
Watson and Belland, "Use of Learner Data in Selecting Instructional Content for Continuing Education," Journal of Instructional Development 8(4):29-33 (1985).
Weinschenk, "Performance Specifications as Change Agents," Technical Training pp. 12-15 (Oct. 1997).
Wilson, "U.S. West Revisits Interactive TV", Interactive Week, Nov. 28, 1999.
Witness Systems promotional brochure for eQuality entitled "Bringing eQuality to eBusiness.".
Witness Systems promotional brochure for eQuality entitled "Building Customer Loyalty Through Business-Driven Recording of Multimedia Interactions in your Contact Center" (2000).

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130262124A1 (en) * 2012-03-30 2013-10-03 Aurix Limited "at least" operator for combining audio search hits
US9275139B2 (en) * 2012-03-30 2016-03-01 Aurix Limited “At least” operator for combining audio search hits
US9535987B2 (en) 2012-03-30 2017-01-03 Avaya Inc. “At least” operator for combining audio search hits
US10311859B2 (en) * 2016-01-16 2019-06-04 Genesys Telecommunications Laboratories, Inc. Material selection for language model customization in speech recognition for speech analytics
US10186255B2 (en) 2016-01-16 2019-01-22 Genesys Telecommunications Laboratories, Inc. Language model customization in speech recognition for speech analytics
US20170206891A1 (en) * 2016-01-16 2017-07-20 Genesys Telecommunications Laboratories, Inc. Material selection for language model customization in speech recognition for speech analytics
US10643604B2 (en) 2016-01-16 2020-05-05 Genesys Telecommunications Laboratories, Inc. Language model customization in speech recognition for speech analytics
EP3200187A1 (en) 2016-01-28 2017-08-02 Flex Ltd. Human voice feedback system
US11837249B2 (en) 2016-07-16 2023-12-05 Ron Zass Visually presenting auditory information
US10642889B2 (en) 2017-02-20 2020-05-05 Gong I.O Ltd. Unsupervised automated topic detection, segmentation and labeling of conversations
US11276407B2 (en) 2018-04-17 2022-03-15 Gong.Io Ltd. Metadata-based diarization of teleconferences
US20190340238A1 (en) * 2018-05-01 2019-11-07 Disney Enterprises, Inc. Natural polite language generation system
US10691894B2 (en) * 2018-05-01 2020-06-23 Disney Enterprises, Inc. Natural polite language generation system
US11195542B2 (en) * 2019-10-31 2021-12-07 Ron Zass Detecting repetitions in audio data

Also Published As

Publication number Publication date
US9401145B1 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
US9401145B1 (en) Speech analytics system and system and method for determining structured speech
US11935540B2 (en) Switching between speech recognition systems
US11594221B2 (en) Transcription generation from multiple speech recognition systems
US10672383B1 (en) Training speech recognition systems using word sequences
US20220122587A1 (en) Training of speech recognition systems
US8145482B2 (en) Enhancing analysis of test key phrases from acoustic sources with key phrase training models
US8219397B2 (en) Data processing system for autonomously building speech identification and tagging data
US8676586B2 (en) Method and apparatus for interaction or discourse analytics
US8639512B2 (en) Method and systems for measuring user performance with speech-to-text conversion for dictation systems
US8996371B2 (en) Method and system for automatic domain adaptation in speech recognition applications
US20150058006A1 (en) Phonetic alignment for user-agent dialogue recognition
CN110135879B (en) Customer service quality automatic scoring method based on natural language processing
BRMU8702846U2 (en) mass-independent, user-independent, device-independent voice messaging system
CN111489765A (en) Telephone traffic service quality inspection method based on intelligent voice technology
Kopparapu Non-linguistic analysis of call center conversations
JP2020071675A (en) Speech summary generation apparatus, speech summary generation method, and program
CA2417926C (en) Method of and system for improving accuracy in a speech recognition system
CN111489743A (en) Operation management analysis system based on intelligent voice technology
JP2020071676A (en) Speech summary generation apparatus, speech summary generation method, and program
CN114818649A (en) Service consultation processing method and device based on intelligent voice interaction technology
Catania et al. Automatic Speech Recognition: Do Emotions Matter?
KR102407055B1 (en) Apparatus and method for measuring dialogue quality index through natural language processing after speech recognition
Reichl et al. Language modeling for content extraction in human-computer dialogues
Draman et al. Malay speech corpus of telecommunication call center preparation for ASR
Tadimeti et al. Evaluation of off-the-shelf speech recognizers on different accents in a dialogue domain

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERINT SYSTEMS LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIV, OMER;ACHITUV, RAN;SHAPIRA, IDO;REEL/FRAME:024598/0225

Effective date: 20100523

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:VERINT AMERICAS INC.;REEL/FRAME:043293/0567

Effective date: 20170629

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:VERINT AMERICAS INC.;REEL/FRAME:043293/0567

Effective date: 20170629

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

AS Assignment

Owner name: VERINT SYSTEMS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VERINT SYSTEMS LTD.;REEL/FRAME:057568/0183

Effective date: 20210201

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8