WO1998032495A1 - Fire extinguishing apparatus and fire preventive apparatus - Google Patents

Fire extinguishing apparatus and fire preventive apparatus Download PDF

Info

Publication number
WO1998032495A1
WO1998032495A1 PCT/JP1998/000207 JP9800207W WO9832495A1 WO 1998032495 A1 WO1998032495 A1 WO 1998032495A1 JP 9800207 W JP9800207 W JP 9800207W WO 9832495 A1 WO9832495 A1 WO 9832495A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
wave
sound
ultrasonic
waves
Prior art date
Application number
PCT/JP1998/000207
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Yamamura
Original Assignee
Yukosha Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukosha Co., Ltd. filed Critical Yukosha Co., Ltd.
Priority to AU55746/98A priority Critical patent/AU5574698A/en
Priority to JP53181698A priority patent/JP3211251B2/en
Publication of WO1998032495A1 publication Critical patent/WO1998032495A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a fire extinguisher and a fire prevention device having a sound wave irradiator for irradiating a sound wave to a combustion product.
  • Conventional fire extinguishers include fire extinguishers, sprinklers, and fire pumps mounted on fire engines and the like.
  • Fire extinguisher used in these fire extinguishers includes water, chemical foam, mechanical foam, and other foams. Powders such as ammonium phosphate and potassium phosphate, and gases such as carbon dioxide gas and halogen gas are used, and these are used alone or in combination.
  • An object of the present invention is to provide a fire extinguisher that can be used for electric equipment, does not adversely affect the environment and the human body, and can be used even in an enclosed space.
  • Another object of the present invention is to provide a fire prevention device to be installed in a place where a fire is expected.
  • a fire extinguisher is characterized in that it has a sound wave irradiating device that irradiates a sound wave to a combustion product.
  • the sound wave may be an ultrasonic wave, and the ultrasonic wave preferably has a polarized wave.
  • the sound wave emitted from the sound wave irradiator generates a dense band in the air, and the part having the rough density is in a kind of vacuum state, so that the cavity effect is generated.
  • large shock vibrations can be given to the fire source as wavy shock waves, and the chain reaction of the fire is cut off, leading to fire extinguishing.
  • the ultrasonic waves have polarization, the amount of attenuation of the ultrasonic energy behind the obstacles is reduced, and the fire extinguishing can be effectively performed even on the combustion substances present behind the obstacles.
  • the fire prevention device in order to provide a fire prevention device to be installed in a place where a fire is expected, is required to have a sound wave radiating device for radiating sound waves to an object.
  • the sound wave may be an ultrasonic wave, and the ultrasonic wave preferably has a polarized wave.
  • a sound wave emitted from the sound wave irradiation device generates a dense band in the air, and a portion having the rough density is in a kind of vacuum state, so that a cavity effect is generated.
  • the target that is expected to fire Since a large shock vibration can be given as a typical shock wave, the occurrence of a fire can be suppressed.
  • FIG. 1 is a block diagram showing a first embodiment of a fire extinguisher according to the present invention.
  • FIG. 2 is a schematic diagram showing a fire model used in a fire extinguishing experiment using the fire extinguisher according to the present invention.
  • FIG. 3 is a block diagram showing a second embodiment of the fire extinguisher according to the present invention.
  • FIG. 4 is a schematic view showing an example of a conventional ultrasonic transducer.
  • FIG. 5 is a diagram showing an example of a conventional ultrasonic irradiation apparatus, in which (a) is a schematic diagram of the configuration, and (b) is a diagram showing the stress distribution at each location of the ultrasonic irradiation apparatus shown in (a).
  • FIG. 4 is a diagram showing a vibration distribution.
  • FIG. 6 is a schematic diagram of an ultrasonic irradiation apparatus for generating ultrasonic waves having polarized waves according to the present invention.
  • FIG. 1 shows a first embodiment of a fire extinguisher according to the present invention.
  • the fire extinguisher 1 includes a discharger 2, a sound collecting microphone 3, an amplifier 4, and a speaker 5.
  • the discharge device 2 is equipped with a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by a programmer (rotary discharge electrode) such as
  • the sound collecting microphone 3 collects sound waves generated in the discharge device 2 and outputs an equivalent electric signal in response to the collected sound waves. Further, the electric signal generated in the sound collecting microphone 3 is amplified by the amplifier 4 including the controller, and the directional speaker 5 emits, for example, intermittent sound waves. In this embodiment, one speaker 5 is provided, but a plurality of speakers may be provided according to the fire extinguishing object.
  • the fire source conforms to the fire model specified when determining the fire extinguisher's capacity unit, as stipulated in Article 6 of the Fire Services Act (Ministerial Ordinance for Specifying Technical Standards for Fire Extinguishers).
  • the prepared fire model 6 was used.
  • the fire model 6 is composed of 14 4 pieces of dried cedar wood 8 of 3 cm square and 90 cm length, which are alternately combined and stacked. It was created by stretching it to a depth and putting 3 liters of gasoline into it.
  • the discharge device 2 is a device that generates a sound by intermittently spark-discharging a DC high-voltage charge charged in a condenser, and is, for example, a capacitor having a capacity of 500 ° F to 120 ° F. By causing a discharge between the electrodes, a large current of approximately 400 to 800 A flows instantaneously, and a sound wave is generated at that moment.
  • the sound waves generated as described above are collected by the sound collecting microphone 3, and the sound collected by the sound collecting microphone 3 is amplified by the amplifier 4, and is output from the directional speaker 5 to about 1 W / nf to 3 W /.
  • the ra a was configured to emit a sound wave of about 1 kHz.
  • the speaker 5 was installed at a position 2 m away from the fire model 6.
  • the combustion rod 9 made of iron angle was ignited with a igniting rod at the gasoline 10 ⁇ 10 to 20 seconds after ignition, the wood burned violently, and the flame was about 2 m to 3 m from the floor. m.
  • the first embodiment uses an ultrasonic wave as a sound wave. Different from fire extinguisher.
  • the fire extinguisher 11 according to the present embodiment includes an ultrasonic vibrator 12, a sound collecting microphone 13, an amplifier 14, and a speaker 15.
  • an ultrasonic wave is a sound wave (including a sound in a low-frequency region) other than a sound that can be heard by a human (a sound having a frequency of about 20 Hz to 30 kHz). Shall mean.
  • the ultrasonic vibrator 12 is capable of generating ultrasonic waves of, for example, about 20 kHz to several 100 kHz, and ultrasonic waves in a low frequency region of about 20 kHz or less.
  • the ultrasonic waves generated by the ultrasonic vibrator 12 are collected by the sound collecting microphone 13. Then, in the sound collecting microphone 13, an equivalent electric signal is output in response to the collected sound waves.
  • a fire model 6 shown in Fig. 2 was used as in the fire extinguishing experiment described above, and water was spread over a combustion vessel 10 of an iron angle combustion table 9 to a depth of 10 cm. I put 3 liters of gasoline inside.
  • Ultrasonic waves of about 300 kHz were generated by the ultrasonic vibrator 12, and the ultrasonic waves generated by the ultrasonic vibrator 12 were collected by the sound collecting microphone 13. Then, the ultrasonic waves collected by the sound collecting microphone 13 are amplified by the amplifier 14, and the directivity of the speakers 15 to 1 W / n! Fired at ⁇ 3 W / nf toward the center of Fire Model 6.
  • the loudspeaker 15 was installed at a position 2 m away from the fire model 6.
  • the flammable gasoline of the iron angle combustion table 9 was ignited with a igniter rod. Ten to twenty seconds after ignition, the wood burns violently, and the flame is about 2 to 3 m from the floor. Spanned the height.
  • the fire is extinguished by irradiating the combustion object with sound waves.
  • Ultrasound is a longitudinal wave in a gas or liquid, but is composed of a longitudinal wave, a shear wave, and a surface wave in a solid. Utilizing this property, we will use an ultrasonic oscillator that can combine longitudinal and transverse waves into ultrasonic waves emitted in a gas.
  • Fig. 4 shows a Langevin type transducer conventionally used.
  • the Langevin type vibrator 50 is formed in a sandwich shape in which a piezoelectric element 52 (or an electrostrictive element) such as lead zirconate titanate is sandwiched between two metal bodies 51A and 51B.
  • An electrode plate 53 made of phosphor bronze or the like is arranged in the middle of the piezoelectric element 52.
  • a high-frequency voltage is applied from a high-frequency power supply 54 between the metal body 51A and the electrode plate 53 and between the metal body 51B and the electrode plate 53, and an ultrasonic wave is emitted from the radiation surface.
  • a cone part 61, a horn part 63 via a flange part 62, a sound tube 64, and a diaphragm 65 are attached to the Langevin type vibrator 50.
  • the vibration amplitude of the Langevin type vibrator 50 is amplified, and the ultrasonic waves generated by the vibration of the diaphragm 65 are emitted into the air through the acoustic tube 64.
  • the cone part 61 and the horn part 63 function as a concentrator of acoustic energy.
  • a stress distribution and an amplitude distribution as shown in FIG. 5 (b) are obtained.
  • the amplitude is minimum at the flange portion 62 and maximum at the diaphragm 65.
  • a half length of the oscillation wavelength corresponds to the length L of the horn portion 63 shown in FIG.
  • an ultrasonic vibrator such as the Langevin type vibrator 50
  • the ultrasonic wave as a longitudinal wave propagates in the air. For this reason, when an obstacle is present, the emitted ultrasonic waves are reflected by the obstacle and cannot reach the burning matter behind the obstacle, and the fire extinguishing effect is reduced.
  • the polarization means a waveform obtained by synthesizing a plurality of waveforms or changing the phase of a plurality of waveforms to make a waveform different from the waveform generated from a single sound source, or adding energy to a sine wave or the like. Is defined as deflected waveform.
  • this ultrasonic irradiation apparatus has two oscillators 71 A and 7 IB to drive two Langevin type vibrators 70 A and 70 B, and these oscillators
  • the devices 71 A and 71 B have a function of changing the phase from 0 ° to 90 ° with respect to each other, and operate so that the driving energies become equal.
  • the cones 72A and 72B are made of different materials, and the sound waves from the two oscillators 71A and 71B caused by the different media in the sound wave propagation shift from the equilibrium point. This causes a particle change, and the velocity becomes the particle velocity, and this change generates a wave.
  • the two oscillators 71A and 71B can further strengthen the wave by pulse driving whose phase can be adjusted.
  • the polarized wave sound waves having a phase difference of 90 ° mutually pass through the cone portions 72 A and 72 B formed of different materials, and are combined by the flange portion 73. a, 7 further becomes also possible that t the cone section 7 2 a, 7 2 vibrations passing through the B is amplified circular polarization type acoustic wave horn section 7 within 4 to clarify the phase difference by 1 B
  • the sound is emitted from the diaphragm 75 and reaches the target via the acoustic tube 76.
  • This polarized wave is an ultrasonic wave that is relatively less affected by obstacles and the like than a longitudinal wave or a transverse wave, and can be used for fire extinguishing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

A fire extinguishing apparatus or fire preventive apparatus which does not damage surroundings of a fire spot, can be used for electric equipment, does not adversely affect environment and human body, and can be used in an open space. The fire extinguishing apparatus has an acoustic wave irradiation device for applying an acoustic wave to a burning article. The acoustic wave may be an ultrasonic wave, and preferably has a polarized wave.

Description

明細 : 消火装置及び火災予防装置 技術分野 Description : Fire extinguisher and fire prevention device
本発明は、 燃焼物に対して音波を照射する音波照射装置を有する消火装置及び 火災予防装置に関する。 背景技術  The present invention relates to a fire extinguisher and a fire prevention device having a sound wave irradiator for irradiating a sound wave to a combustion product. Background art
従来の消火装置には、 消火器、 またはスプリンクラー等、 あるいは消防自動車 等に搭載する消防ポンプ等があり、 これらの消火装置に使用する消火剤としては、 水、 化学泡、 機械泡等の泡沫、 リ ン酸アンモニゥム、 リ ン酸カリウム等の粉末、 二酸化炭素ガス、 ハロゲンガス等のガスが使用され、 これらは単独または組み合 わせて使用されている。  Conventional fire extinguishers include fire extinguishers, sprinklers, and fire pumps mounted on fire engines and the like.Fire extinguisher used in these fire extinguishers includes water, chemical foam, mechanical foam, and other foams. Powders such as ammonium phosphate and potassium phosphate, and gases such as carbon dioxide gas and halogen gas are used, and these are used alone or in combination.
しかし、 消火のために水を使用した場合には、 安価であるという利点があるが、 電気設備などには使用することができず、 また火災場所によっては水を入手し難 い場合もある。 また、 仮に水によって鎮火したとしても、 水損により火災場所の 周囲の損害が大きい。  However, when water is used to extinguish a fire, it has the advantage of being inexpensive, but it cannot be used for electrical equipment, etc., and in some fire locations it is difficult to obtain water. Even if the fire was extinguished by water, the damage around the fire place would be severe due to water damage.
一方、 泡沫等を消火に使用した場合には、 油脂火災には威力を発揮するが、 水 の場合と同様に電気設備などには使用することができず、 周囲の汚損の程度は水 の場合よりも大きくなる。  On the other hand, when foam is used to extinguish fire, it is effective for oil and fat fires, but it cannot be used for electric equipment etc. as in the case of water, and the degree of contamination in the surroundings is that of water Larger than.
また、 粉末消火剤は、 小規模の火災には効果があるが、 薬剤を放出するための 二酸化炭素ガス等が必要になり、 装置全体の重量が大きくなるとともに、 高価な ものとなる。 また、 本消火剤を使用した場合には放出後の汚損も甚大である。 さらに、 二酸化炭素ガス、 ハロゲンガス等のガスを消火剤として使用した場合 には、 環境に悪影響を与えるとともに、 人体にも影響を与えることとなる。 また、 ガスはほぼ密閉された空間に使用しないと効果が少ない。 発明の開示 そこで、 本発明は上記問題に鑑みてなされたものであって、 水、 泡沫、 粉末、 ガス等の消火剤を使用することがないため、 火災現場の周囲にも損害を与えるこ とがなく、 電気設備にも使用することができ、 環境及び人体に悪影響を与えるこ とがなく、 密閉空間でなく とも使用することのできる消火装置を提供することを 目的とする。 Although powder extinguishing agents are effective for small-scale fires, they require carbon dioxide gas and the like to release the chemicals, which increases the weight of the entire device and makes it expensive. When this fire extinguisher is used, fouling after release is enormous. Furthermore, if a gas such as carbon dioxide gas or halogen gas is used as a fire extinguishing agent, it will not only have a negative effect on the environment, but also on the human body. In addition, gas has little effect unless it is used in an almost closed space. Disclosure of the invention Therefore, the present invention has been made in view of the above problems, and does not use fire extinguisher such as water, foam, powder, gas, etc., so that there is no damage to the surroundings of the fire site. An object of the present invention is to provide a fire extinguisher that can be used for electric equipment, does not adversely affect the environment and the human body, and can be used even in an enclosed space.
また、 本発明は、 出火が予想されるような場所に設置するための火災予防装置 を提供することを目的とする。  Another object of the present invention is to provide a fire prevention device to be installed in a place where a fire is expected.
上記目的を達成するため、 本発明にかかる消火装置は、 燃焼物に対して音波を 照射する音波照射装置を有することを特徴とする。 また、 この音波が超音波であ つてもよく、 超音波は偏波を有することが好適である。  In order to achieve the above object, a fire extinguisher according to the present invention is characterized in that it has a sound wave irradiating device that irradiates a sound wave to a combustion product. Further, the sound wave may be an ultrasonic wave, and the ultrasonic wave preferably has a polarized wave.
そして、 上記消火装置では、 音波照射装置から発射される音波によって空気中 に密度の粗密帯が生じ、 粗い密度を有する部分が一種の真空状態となるため、 キ ャビティ効果が発生する。 これにより、 火源に対して波状的な衝撃波動として大 きなショック振動を与えることができるため、 火災の連鎖反応が絶たれて消火に 繋がる。  In the above fire extinguisher, the sound wave emitted from the sound wave irradiator generates a dense band in the air, and the part having the rough density is in a kind of vacuum state, so that the cavity effect is generated. As a result, large shock vibrations can be given to the fire source as wavy shock waves, and the chain reaction of the fire is cut off, leading to fire extinguishing.
これによつて、 水、 泡沫、 粉末、 ガス等の消火剤を使用することがないため、 火災現場の周囲にも損害を与えることなく、 電気設備にも使用することができ、 環境及び人体に悪影響を与えることがなく、 密閉空間でなく とも使用することが 可能となる。  This eliminates the use of fire extinguisher such as water, foam, powder, gas, etc., so that it can be used for electrical equipment without damaging the surroundings of the fire, and can be used for the environment and the human body. It has no adverse effects and can be used even in an enclosed space.
また、 超音波が偏波を有すると、 障害物の背後への超音波エネルギーの減衰量 を低減させ、 障害物の背後に存在する燃焼物に対しても効果的に消火を行うこと ができる。  Also, when the ultrasonic waves have polarization, the amount of attenuation of the ultrasonic energy behind the obstacles is reduced, and the fire extinguishing can be effectively performed even on the combustion substances present behind the obstacles.
さらに、 出火が予想されるような場所に設置するための火災予防装置を提供す るため、 本発明にかかる火災予防装置は、 対象物に対して音波を照射する音波照 射装置を有することを特徴とする。 また、 この音波が超音波であってもよく、 超 音波は偏波を有することが好適である。  Furthermore, in order to provide a fire prevention device to be installed in a place where a fire is expected, the fire prevention device according to the present invention is required to have a sound wave radiating device for radiating sound waves to an object. Features. Further, the sound wave may be an ultrasonic wave, and the ultrasonic wave preferably has a polarized wave.
そして、 この火災予防装置では、 音波照射装置から発射される音波によって空 気中に密度の粗密帯が生じ、 粗い密度を有する部分が一種の真空状態となるため、 キヤビティ効果が発生する。 これにより、 出火が予想される対象物に対して波状 的な衝撃波動として大きなショック振動を与えることができるため、 火災の発生 を抑止することができる。 In this fire prevention device, a sound wave emitted from the sound wave irradiation device generates a dense band in the air, and a portion having the rough density is in a kind of vacuum state, so that a cavity effect is generated. As a result, the target that is expected to fire Since a large shock vibration can be given as a typical shock wave, the occurrence of a fire can be suppressed.
また、 超音波が偏波を有すると、 障害物の背後への超音波エネルギーの減衰量 を低減させ、 障害物の背後に存在する対象物に対しても効果的に火災予防をする ことができる。 図面の簡単な説明  In addition, if the ultrasonic waves have polarized waves, the amount of attenuation of the ultrasonic energy behind the obstacles is reduced, and the fire prevention can be effectively performed even for an object behind the obstacles. . BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる消火装置の第 1実施例を示すプロック図である。 第 2図は、 本発明にかかる消火装置を使用した消火実験において使用した火災 模型を示す概略図である。  FIG. 1 is a block diagram showing a first embodiment of a fire extinguisher according to the present invention. FIG. 2 is a schematic diagram showing a fire model used in a fire extinguishing experiment using the fire extinguisher according to the present invention.
第 3図は、 本発明にかかる消火装置の第 2実施例を示すプロック図である。 第 4図は、 従来の超音波振動子の一例を示す概略図である。  FIG. 3 is a block diagram showing a second embodiment of the fire extinguisher according to the present invention. FIG. 4 is a schematic view showing an example of a conventional ultrasonic transducer.
第 5図は、 従来の超音波照射装置の一例を示す図であって、 (a ) は構成の概 略図、 (b ) は (a ) に示した超音波照射装置の各場所における応力分布と、 振 動分布を示す図である。  FIG. 5 is a diagram showing an example of a conventional ultrasonic irradiation apparatus, in which (a) is a schematic diagram of the configuration, and (b) is a diagram showing the stress distribution at each location of the ultrasonic irradiation apparatus shown in (a). FIG. 4 is a diagram showing a vibration distribution.
第 6図は、 本発明にかかる偏波を有する超音波を発生させるための超音波照射 装置の概略図である。 発明を実施するための最良の形態  FIG. 6 is a schematic diagram of an ultrasonic irradiation apparatus for generating ultrasonic waves having polarized waves according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明にかかる消火装置及び火災予防装置の実施の形態の具体例を図面 を参照しながら説明する。  Next, specific examples of embodiments of the fire extinguishing device and the fire prevention device according to the present invention will be described with reference to the drawings.
第 1図は、 本発明にかかる消火装置の第 1実施例を示す。 この消火装置 1は、 放電装置 2、 集音マイク 3、 増幅器 4及びスピーカ 5によって構成される。 放電装置 2は、 ウィムズハース ト誘導起電機またはテスラコイル等、 及び多重 波発信機等のプログラマー (回転放電電極) を備えるものであって、 充電した直 流の高電圧電荷を間断的に火花放電させることによって音を発生させるものであ る。  FIG. 1 shows a first embodiment of a fire extinguisher according to the present invention. The fire extinguisher 1 includes a discharger 2, a sound collecting microphone 3, an amplifier 4, and a speaker 5. The discharge device 2 is equipped with a programmer (rotary discharge electrode) such as a Wimshurst induction motor or Tesla coil and a multi-wave transmitter. The sound is generated by
また、 集音マイク 3は、 放電装置 2において発生した音波を集音し、 集音され た音波に応答して等価な電気信号を出力する。 さらに、 コントローラを含む増幅器 4によって、 集音マイク 3において発生し た電気信号が増幅され、 指向性を有するスピーカ 5から例えば間欠的に音波が発 射される。 尚、 本実施例では、 スピーカ 5を 1台備える構成としているが、 消火 対象に応じて複数のスピーカを設けてもよい。 The sound collecting microphone 3 collects sound waves generated in the discharge device 2 and outputs an equivalent electric signal in response to the collected sound waves. Further, the electric signal generated in the sound collecting microphone 3 is amplified by the amplifier 4 including the controller, and the directional speaker 5 emits, for example, intermittent sound waves. In this embodiment, one speaker 5 is provided, but a plurality of speakers may be provided according to the fire extinguishing object.
次に、 本発明にかかる消火装置を使用した消火実験結果を示す。  Next, the results of fire extinguishing experiments using the fire extinguisher according to the present invention will be described.
火源には、 第 2図に示すように、 消防法施行規則第 6条 (消火器の技術上の規 格を定める省令) に規定された、 消火器の能力単位判定時に行う火災模型に準じ て  As shown in Fig. 2, the fire source conforms to the fire model specified when determining the fire extinguisher's capacity unit, as stipulated in Article 6 of the Fire Services Act (Ministerial Ordinance for Specifying Technical Standards for Fire Extinguishers). hand
作成した火災模型 6を使用した。 The prepared fire model 6 was used.
火災模型 6は、 3 c m角、 9 0 c m長さの乾燥した杉角材 8を 1 4 4本交互に 組み合わせて積み重ね、 鉄アングル製燃焼台 9の燃焼なベ 1 0に水を 1 0 c mの 深さで張り、 その中にガソリン 3 リ ッ トルを入れることにより作成した。  The fire model 6 is composed of 14 4 pieces of dried cedar wood 8 of 3 cm square and 90 cm length, which are alternately combined and stacked. It was created by stretching it to a depth and putting 3 liters of gasoline into it.
実験装置としては、 第 1図に示す構成を有する消火装置 1を使用した。  As an experimental device, a fire extinguisher 1 having the configuration shown in FIG. 1 was used.
放電装置 2は、 コンデンザに充電した直流の高電圧電荷を間断的に火花放電さ せることによって音を発生させる装置であって、 例えば、 5 0 0〃 F ~ 1 2 0 0 Fの容量のコンデンサによって電極間に放電させることにより、 瞬時にほぼ 4 0 0八から 8 0 0 Aの大電流が流れ、 その瞬間に音波が発生する。  The discharge device 2 is a device that generates a sound by intermittently spark-discharging a DC high-voltage charge charged in a condenser, and is, for example, a capacitor having a capacity of 500 ° F to 120 ° F. By causing a discharge between the electrodes, a large current of approximately 400 to 800 A flows instantaneously, and a sound wave is generated at that moment.
上記のとおり発生した音波を集音マイク 3で集音し、 集音マイク 3によって集 音された音が増幅器 4によって増幅され、 指向性を有するスピーカ 5から、 約 1 W/ nf ~ 3 W/ raaで、 約 1 k H zの音波を発するように構成した。 尚、 スピーカ 5は、 火災模型 6から 2 m離れた位置に設置した。 The sound waves generated as described above are collected by the sound collecting microphone 3, and the sound collected by the sound collecting microphone 3 is amplified by the amplifier 4, and is output from the directional speaker 5 to about 1 W / nf to 3 W /. The ra a was configured to emit a sound wave of about 1 kHz. The speaker 5 was installed at a position 2 m away from the fire model 6.
上記鉄アングル製燃焼台 9の燃焼なベ 1 0のガソリンに火付け棒にて着火した < 着火後 1 0〜 2 0秒後には、 木材が激しく炎上し、 炎は床面から約 2 m〜 3 mの 高さに及んだ。  The combustion rod 9 made of iron angle was ignited with a igniting rod at the gasoline 10 <10 to 20 seconds after ignition, the wood burned violently, and the flame was about 2 m to 3 m from the floor. m.
着火 1分後に消火を開始した。 上述のとおり、 スピーカ 5から、 l W/ nf〜 3 W/ nfで、 約 1 k H zの音波を火災模型 6の中心部に向かって発射した。 まず、 第 1波によって炎が一瞬吹き飛び、 1秒後に火災が抑制された。 しかし、 木材 にォキ状で火が残っていると思われるので、 第 2波、 第 3波と波状的に、 上記音 波を火災模型 6の中心部に向かって発射し消火を行った。 その結果、 火災模型 6 は、 約 2 0秒後に消火された。 1 minute after ignition, fire extinguishing started. As described above, a sound wave of about 1 kHz was emitted from the speaker 5 toward the center of the fire model 6 at lW / nf to 3 W / nf. First, the first wave blew out the flame for an instant, and a second later the fire was suppressed. However, it seems that fire was left in the wood in the shape of fire. Therefore, the above waves were fired toward the center of the fire model 6 in a wave-like manner with the second wave and the third wave to extinguish the fire. As a result, fire model 6 Was extinguished after about 20 seconds.
次に、 本発明にかかる消火装置の第 2実施例を第 3図を参照しながら説明する c 本消火装置では、 音波として超音波を使用している点が上記第 1実施例にかか る消火装置と異なる。 本実施例における消火装置 1 1は、 超音波振動子 1 2、 集 音マイク 1 3、 増幅器 1 4及びスピーカ 1 5によって構成される。 Next, a second embodiment of the fire extinguisher according to the present invention will be described with reference to FIG. 3. In the c- fire extinguisher, the first embodiment uses an ultrasonic wave as a sound wave. Different from fire extinguisher. The fire extinguisher 11 according to the present embodiment includes an ultrasonic vibrator 12, a sound collecting microphone 13, an amplifier 14, and a speaker 15.
尚、 本明細書においては、 超音波とは、 人間が聴くことのできる音 (約 2 0 H z〜 3 0 k H zの周波数を有する音) 以外の音波 (低周波領域のものも含む) を いうものとする。  In this specification, an ultrasonic wave is a sound wave (including a sound in a low-frequency region) other than a sound that can be heard by a human (a sound having a frequency of about 20 Hz to 30 kHz). Shall mean.
超音波振動子 1 2は、 例えば約 2 0 k H z〜数 1 0 0 k H zの超音波、 及び約 2 0 H z以下の低周波領域の超音波を発生させることができるものであって、 こ の超音波振動子 1 2によって発生した超音波が集音マイク 1 3によって集音され る。 そして、 集音マイク 1 3において、 集音された音波に応答して等価な電気信 号が出力される。  The ultrasonic vibrator 12 is capable of generating ultrasonic waves of, for example, about 20 kHz to several 100 kHz, and ultrasonic waves in a low frequency region of about 20 kHz or less. The ultrasonic waves generated by the ultrasonic vibrator 12 are collected by the sound collecting microphone 13. Then, in the sound collecting microphone 13, an equivalent electric signal is output in response to the collected sound waves.
さらに、 コントロ一ラを含む増幅器 1 4によって、 集音マイク 1 3の出力信号 が増幅され、 指向性を有するスピーカ 1 5から例えば間欠的に音波が発射される c 尚、 本実施例においても、 スピーカ 1 5を 1台備える構成としているが、 消火対 象に応じて複数のスビーカを設けてもよい。 Furthermore, the amplifier 1 4, including a controller one la, the output signal of the sound collecting microphone 1 3 is amplified, c waves from the speaker 1 5 has directivity example intermittently is fired Also in this embodiment, Although one speaker 15 is provided, a plurality of beakers may be provided according to the fire extinguishing target.
次に、 本発明にかかる消火装置を使用した消火実験結果を示す。 火源には、 前 記消火実験と同様に、 第 2図に示す火災模型 6を使用し、 鉄アングル製燃焼台 9 の燃焼なベ 1 0に水を 1 0 c mの深さで張り、 その中にガソリン 3 リ ッ トルを入 れた。  Next, the results of fire extinguishing experiments using the fire extinguisher according to the present invention will be described. As a fire source, a fire model 6 shown in Fig. 2 was used as in the fire extinguishing experiment described above, and water was spread over a combustion vessel 10 of an iron angle combustion table 9 to a depth of 10 cm. I put 3 liters of gasoline inside.
実験装置としては、 第 3図に示す構成を有する消火装置 1 1 を使用した。  As an experimental device, a fire extinguisher 11 having the configuration shown in FIG. 3 was used.
超音波振動子 1 2によって、 約 3 0 0 k H zの超音波を発生させ、 この超音波 振動子 1 2によって発生した超音波を集音マイク 1 3によって集音した。 そして、 集音マイク 1 3によって、 集音された超音波を増幅器 1 4によって増幅し、 指向 性を有するスピーカ 1 5から 1 W/ n!〜 3 W/ nfで、 火災模型 6の中心部に向か つて発射した。 尚、 スピーカ 1 5は、 火災模型 6から 2 m離れた位置に設置した- 上記鉄アングル製燃焼台 9の燃焼なベ 1 0のガソリンに火付棒にて着火した。 着火後 1 0 ~ 2 0秒後には、 木材が激しく炎上し、 炎は床面から約 2 m ~ 3 mの 高さに及んだ。 Ultrasonic waves of about 300 kHz were generated by the ultrasonic vibrator 12, and the ultrasonic waves generated by the ultrasonic vibrator 12 were collected by the sound collecting microphone 13. Then, the ultrasonic waves collected by the sound collecting microphone 13 are amplified by the amplifier 14, and the directivity of the speakers 15 to 1 W / n! Fired at ~ 3 W / nf toward the center of Fire Model 6. The loudspeaker 15 was installed at a position 2 m away from the fire model 6. The flammable gasoline of the iron angle combustion table 9 was ignited with a igniter rod. Ten to twenty seconds after ignition, the wood burns violently, and the flame is about 2 to 3 m from the floor. Spanned the height.
着火 1分後に消火を開始した。 上述のとおり、 スピーカ 1 5から、 l W/ nf ~ 3 W/ m2で、 約 3 0 0 k H zの音波を火災模型 6の中心部に向かって発射した。 本実験においても、 前記実験と同様に、 まず、 第 1波によって炎が一瞬吹き飛び、 約 1秒後に火災が抑制された。 しかし、 木材にォキ状で火が残っていると思われ るので、 第 2波、 第 3波と波状的に、 上記音波を火災模型 6の中心部に向かって 発射し消火を行った。 その結果、 火災模型 6は約 2 0秒後に消火された。 1 minute after ignition, fire extinguishing started. As described above, a sound wave of about 300 kHz was emitted from the speaker 15 at l W / nf to 3 W / m 2 toward the center of the fire model 6. In this experiment, as in the previous experiment, first, the first wave caused the flame to blow off for a moment, and the fire was suppressed about 1 second later. However, it seems that fire was left in the wood in the shape of fire. Therefore, the sound waves were fired toward the center of the fire model 6 in a wave-like manner as the second wave and the third wave to extinguish the fire. As a result, fire model 6 was extinguished approximately 20 seconds later.
尚、 1 W/ nf〜 3 W/ m2、 周波数 3 H z〜 2 0 H zの超音波をスピーカ 1 5か ら火災模型 6の中心部に向かって発射した実験においても、 前記約 3 0 0 k H z の超音波を利用した実験例と同様の結果が得られ、 約 2 0 H z以下の低周波領域 の超音波によって消火効果があることが確認された。 Incidentally, in an experiment in which ultrasonic waves having a frequency of 1 W / nf to 3 W / m 2 and a frequency of 3 Hz to 20 Hz were emitted from the speaker 15 toward the center of the fire model 6, the above-mentioned approx. The same results as in the experimental example using ultrasonic waves at 0 kHz were obtained, and it was confirmed that there was a fire extinguishing effect by ultrasonic waves in the low-frequency region of about 20 Hz or less.
尚、 本発明にかかる消火装置のみでは完全な消火が困難な場合には、 従来の消 火装置と組み合わせることも可能である。  When it is difficult to completely extinguish a fire using the fire extinguisher according to the present invention alone, it is possible to combine the fire extinguisher with a conventional fire extinguisher.
上記実施例においては、 燃焼物に音波を照射することにより消火しているが、 出火が予想されるような場所に予め音波を発する事により、 火災の発生を抑制す ることも可能である。  In the above embodiment, the fire is extinguished by irradiating the combustion object with sound waves. However, it is also possible to suppress the occurrence of fire by emitting sound waves in advance at a place where a fire is expected.
次に、 上記本発明にかかる消火装置及び火災予防装置に使用される超音波振動 子について説明する。  Next, the ultrasonic vibrator used in the fire extinguisher and the fire prevention device according to the present invention will be described.
超音波は、 気体または液体中では縦波であるが、 固体内では、 縦波と、 横波と、 表面波で構成される。 この性質を利用して、 気体中に発振される超音波に縦波と 横波をべク トル的に結合させることが可能な超音波発振子を使用する。  Ultrasound is a longitudinal wave in a gas or liquid, but is composed of a longitudinal wave, a shear wave, and a surface wave in a solid. Utilizing this property, we will use an ultrasonic oscillator that can combine longitudinal and transverse waves into ultrasonic waves emitted in a gas.
これによつて、 障害物の背後への超音波エネルギーの減衰量を低減し、 障害物 の背後に存在する燃焼物に対しても効果的に消火を行えることができるようにす る。  As a result, the amount of attenuation of the ultrasonic energy behind the obstacle is reduced, and the fire extinguishing can be effectively performed even on the burning matter present behind the obstacle.
まず、 従来使用されている超音波振動子について説明する。  First, a conventional ultrasonic transducer will be described.
第 4図は、 従来使用されているランジュバン型振動子である。 このランジュバ ン型振動子 5 0は、 2個の金属体 5 1 A及び 5 1 Bの間に、 チタン酸ジルコン酸 鉛等の圧電素子 5 2 (または電歪素子) を挟んだサン ドイッチ状に構成され、 圧 電素子 5 2の中間部には、 リン青銅等からなる電極板 5 3が配置される。 そして、 金属体 5 1 Aと電極板 5 3 との間、 及び金属体 5 1 Bと電極板 5 3 との間に高周 波電源 5 4から高周波電圧が加えられ、 放射面より超音波が発つせられる。 Fig. 4 shows a Langevin type transducer conventionally used. The Langevin type vibrator 50 is formed in a sandwich shape in which a piezoelectric element 52 (or an electrostrictive element) such as lead zirconate titanate is sandwiched between two metal bodies 51A and 51B. An electrode plate 53 made of phosphor bronze or the like is arranged in the middle of the piezoelectric element 52. And A high-frequency voltage is applied from a high-frequency power supply 54 between the metal body 51A and the electrode plate 53 and between the metal body 51B and the electrode plate 53, and an ultrasonic wave is emitted from the radiation surface. Can be
そして、 第 5図 (a ) に示すように、 ランジュバン型振動子 5 0にコーン部 6 1 と、 フランジ部 6 2を介してホーン部 6 3 と、 音響筒 6 4と、 振動板 6 5 とを 加え、 ランジュバン型振動子 5 0による振動振幅を増幅し、 振動板 6 5の振動に より発生した超音波を音響筒 6 4を通じて空気中に発する。 ここで、 コーン部 6 1及びホーン部 6 3は音響エネルギの集中器として機能する。  Then, as shown in FIG. 5 (a), a cone part 61, a horn part 63 via a flange part 62, a sound tube 64, and a diaphragm 65 are attached to the Langevin type vibrator 50. In addition, the vibration amplitude of the Langevin type vibrator 50 is amplified, and the ultrasonic waves generated by the vibration of the diaphragm 65 are emitted into the air through the acoustic tube 64. Here, the cone part 61 and the horn part 63 function as a concentrator of acoustic energy.
この際、 第 5図 (b ) に示すような応力分布と振幅分布が得られる。 振幅は、 フランジ部 6 2において最小となり、 振動板 6 5において最大となる。 また、 発 振波長えの 2分の 1の長さが第 5図に示すホーン部 6 3の長さ Lに相当する。 しかし、 上記ランジュバン型振動子 5 0等の超音波振動子を使用し、 超音波を 空気中に発した場合には、 縦波としての超音波が空気中を伝播する。 このため、 障害物が存在する場合には、 発せられた超音波は、 障害物により反射され、 障害 物の背後に存在する燃焼物まで達することができず、 消火効果が低下する。  At this time, a stress distribution and an amplitude distribution as shown in FIG. 5 (b) are obtained. The amplitude is minimum at the flange portion 62 and maximum at the diaphragm 65. Further, a half length of the oscillation wavelength corresponds to the length L of the horn portion 63 shown in FIG. However, when an ultrasonic vibrator such as the Langevin type vibrator 50 is used and an ultrasonic wave is emitted in the air, the ultrasonic wave as a longitudinal wave propagates in the air. For this reason, when an obstacle is present, the emitted ultrasonic waves are reflected by the obstacle and cannot reach the burning matter behind the obstacle, and the fire extinguishing effect is reduced.
そこで、 縦波に横波成分を加えて、 単純な縦波ではなく、 偏波面を有する超音 波を得るため、 以下の構成を有する超音波振動子を使用する。 ここで、 偏波とは、 複数の波形を合成させ、 または複数の波形の位相を変化させ、 単一音源から発生 した波形とは異なる波形としたもの、 または、 正弦波等にエネルギー等を加えて 波形を偏向させたものと定義される。  Therefore, in order to obtain a supersonic wave having a plane of polarization instead of a simple longitudinal wave by adding a transverse wave component to the longitudinal wave, an ultrasonic transducer having the following configuration is used. Here, the polarization means a waveform obtained by synthesizing a plurality of waveforms or changing the phase of a plurality of waveforms to make a waveform different from the waveform generated from a single sound source, or adding energy to a sine wave or the like. Is defined as deflected waveform.
第 6図に示すように、 この超音波照射装置は、 2つのランジュバン型振動子 7 0 A、 7 0 Bを駆動するため、 2つの発振器 7 1 A、 7 I Bを有し、 これらの発 振器 7 1 A、 7 1 Bは、 互いに位相を 0 ° 乃至 9 0 ° 変化させることのできる機 能を有し、 駆動エネルギが等しくなるように動作させる。  As shown in FIG. 6, this ultrasonic irradiation apparatus has two oscillators 71 A and 7 IB to drive two Langevin type vibrators 70 A and 70 B, and these oscillators The devices 71 A and 71 B have a function of changing the phase from 0 ° to 90 ° with respect to each other, and operate so that the driving energies become equal.
また、 コーン部 7 2 A、 7 2 Bは、 互いに異なる材質で形成され、 音波伝播上、 媒体が異なることによって生ずる 2つの発振器 7 1 A、 7 1 Bからの音波が平衡 点からのずれを生じ、 これによつて粒子変化が発生し、 さらにその速度が粒子速 度となり、 この変化によって波動が発生する。  The cones 72A and 72B are made of different materials, and the sound waves from the two oscillators 71A and 71B caused by the different media in the sound wave propagation shift from the equilibrium point. This causes a particle change, and the velocity becomes the particle velocity, and this change generates a wave.
そして、 2つの発振器 7 1 A、 7 1 Bは、 位相を調整することのできるパルス 駆動によって、 前記波動をさらに強力なものとすることができる。 偏波については、 互いに異なる材質で形成されたコーン部 7 2 A、 7 2 Bを通 過し、 互いに 9 0 ° の位相差を有する音波がフランジ部 7 3によって合成される 尚、 発振器 7 1 A、 7 1 Bによってさらに位相差を明確にすることも可能である t 前記コーン部 7 2 A、 7 2 Bを通過した振動はホーン部 7 4内で増幅され円偏波 状の音波となって振動板 7 5から発つせられ、 音響筒 7 6を介して対象物に達す る。 この偏波は、 縦波または横波よりも、 比較的障害物等による影響を受けにく い超音波であって、 消火に利用することができる。 The two oscillators 71A and 71B can further strengthen the wave by pulse driving whose phase can be adjusted. As for the polarized wave, sound waves having a phase difference of 90 ° mutually pass through the cone portions 72 A and 72 B formed of different materials, and are combined by the flange portion 73. a, 7 further becomes also possible that t the cone section 7 2 a, 7 2 vibrations passing through the B is amplified circular polarization type acoustic wave horn section 7 within 4 to clarify the phase difference by 1 B The sound is emitted from the diaphragm 75 and reaches the target via the acoustic tube 76. This polarized wave is an ultrasonic wave that is relatively less affected by obstacles and the like than a longitudinal wave or a transverse wave, and can be used for fire extinguishing.

Claims

請求の範囲 The scope of the claims
1 . 燃焼物に対して音波を照射する音波照射装置を有することを特徴とする消 火装置。  1. A fire extinguisher characterized by having a sound wave irradiator for irradiating a sound wave to a combustion product.
2 . 前記音波は超音波であることを特徴とする請求項 1記載の消火装置。  2. The fire extinguisher according to claim 1, wherein the sound wave is an ultrasonic wave.
3 . 前記超音波は偏波を有することを特徴とする請求項 2記載の消火装置。 3. The fire extinguisher according to claim 2, wherein the ultrasonic waves have a polarization.
4 . 対象物に対して音波を照射する音波照射装置を有することを特徴とする火 災予防装置。 4. A fire prevention device having a sound wave irradiation device for irradiating a sound wave to an object.
5 . 前記音波は超音波であることを特徴とする請求項 4記載の火災予防装置。 5. The fire prevention device according to claim 4, wherein the sound wave is an ultrasonic wave.
6 . 前記超音波は偏波を有することを特徴とする請求項 5記載の火災予防装置 < 6. The fire prevention device according to claim 5, wherein the ultrasonic wave has a polarization.
PCT/JP1998/000207 1997-01-24 1998-01-21 Fire extinguishing apparatus and fire preventive apparatus WO1998032495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU55746/98A AU5574698A (en) 1997-01-24 1998-01-21 Fire extinguishing apparatus and fire preventive apparatus
JP53181698A JP3211251B2 (en) 1997-01-24 1998-01-21 Fire extinguisher and fire prevention device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1145597 1997-01-24
JP9/11455 1997-01-24

Publications (1)

Publication Number Publication Date
WO1998032495A1 true WO1998032495A1 (en) 1998-07-30

Family

ID=11778579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000207 WO1998032495A1 (en) 1997-01-24 1998-01-21 Fire extinguishing apparatus and fire preventive apparatus

Country Status (3)

Country Link
JP (1) JP3211251B2 (en)
AU (1) AU5574698A (en)
WO (1) WO1998032495A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015130A (en) * 2004-06-02 2006-01-19 National Institute Of Advanced Industrial & Technology Fire fighting method using pulsed laser
US20100059236A1 (en) * 2008-09-11 2010-03-11 Integrated Systems Excellence Corporation Fire suppression systems and methods
WO2012070050A3 (en) * 2010-11-28 2012-12-06 Daniel Leigh Apparatus and method for firefighting
CN105833446A (en) * 2016-04-29 2016-08-10 西安交通大学 Ultrasonic fire extinguisher
CN106964086A (en) * 2017-03-30 2017-07-21 合肥工业大学 A kind of sound wave extinguishing device for being used to test
CN109331372A (en) * 2018-10-23 2019-02-15 佛山市南海区九江镇初级中学 Fire extinguisher and fire extinguisher monitoring system
CN110227219A (en) * 2019-07-08 2019-09-13 上海交通大学 Ultrasonic standing wave fire extinguishing system
US11225326B2 (en) 2017-12-14 2022-01-18 Incaendium Initiative Corporation Fire resistant aerial vehicle for suppressing widespread fires
RU2768866C1 (en) * 2021-09-30 2022-03-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева" Method for extinguishing fires in an electrical installation and a device for its implementation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881550B1 (en) * 2017-08-30 2018-07-24 주식회사 이앤씨 An Ultrasonic Fire Extinguisher
KR101982070B1 (en) * 2018-04-24 2019-05-24 주식회사 나노메딕스 Handy-Type Spray Combined Sound Wave Extinguisher
KR101982069B1 (en) * 2018-04-24 2019-08-28 주식회사 나노메딕스 Handy-Type Spray Cooperating Sound Wave Extinguisher

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038441B2 (en) * 1983-12-02 1991-02-06 Infurasonitsuku Ab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038441B2 (en) * 1983-12-02 1991-02-06 Infurasonitsuku Ab

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581127B2 (en) * 2004-06-02 2010-11-17 独立行政法人産業技術総合研究所 Fire extinguishing method using pulse laser
JP2006015130A (en) * 2004-06-02 2006-01-19 National Institute Of Advanced Industrial & Technology Fire fighting method using pulsed laser
US20100059236A1 (en) * 2008-09-11 2010-03-11 Integrated Systems Excellence Corporation Fire suppression systems and methods
WO2010051107A1 (en) * 2008-09-11 2010-05-06 Integrated Systems Excellence Corporation Fire suppression systems and methods
US10322307B2 (en) 2010-11-28 2019-06-18 Daniel Leigh Apparatus and method for firefighting
WO2012070050A3 (en) * 2010-11-28 2012-12-06 Daniel Leigh Apparatus and method for firefighting
CN105833446A (en) * 2016-04-29 2016-08-10 西安交通大学 Ultrasonic fire extinguisher
CN105833446B (en) * 2016-04-29 2021-03-16 西安交通大学 Ultrasonic fire extinguisher
CN106964086A (en) * 2017-03-30 2017-07-21 合肥工业大学 A kind of sound wave extinguishing device for being used to test
US11225326B2 (en) 2017-12-14 2022-01-18 Incaendium Initiative Corporation Fire resistant aerial vehicle for suppressing widespread fires
CN109331372A (en) * 2018-10-23 2019-02-15 佛山市南海区九江镇初级中学 Fire extinguisher and fire extinguisher monitoring system
CN110227219A (en) * 2019-07-08 2019-09-13 上海交通大学 Ultrasonic standing wave fire extinguishing system
RU2768866C1 (en) * 2021-09-30 2022-03-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева" Method for extinguishing fires in an electrical installation and a device for its implementation

Also Published As

Publication number Publication date
AU5574698A (en) 1998-08-18
JP3211251B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3211251B2 (en) Fire extinguisher and fire prevention device
RU2188613C2 (en) Method and device for suppressing acoustic noise waves
US10966309B2 (en) Device for generating a non-thermal atmospheric pressure plasma
US7292502B2 (en) Systems and methods for producing a sound pressure field
CN105833446B (en) Ultrasonic fire extinguisher
JP6438943B2 (en) Acoustic device and its operation
US20100203460A1 (en) Process of extinction, expantion and controlling of fire flames thru acoustic
JP3336323B2 (en) Ultrasonic cleaning method and apparatus
Chapelon et al. The feasibility of tissue ablation using high intensity electronically focused ultrasound
US6359835B1 (en) High intensity directed light and sound crowd dispersion device
JPH05317820A (en) Ultrasonic cleaning method and device therefor
RU2722428C1 (en) Sound extinguisher
US7711124B2 (en) Method and device for attenuating the noise generated at the outlet of an exhaust line
Been et al. A parametric array PMUT loudspeaker with high efficiency and wide flat bandwidth
JP6488513B2 (en) Focused sound field generator
JP2004337800A (en) Ultrasonic cavitation generator
AU2021100037A4 (en) An Ultrasonic Fire Extinguisher
JPH03279700A (en) Fluid driving method by ultrasonic wave and device thereof
RU2788988C1 (en) Method for extinguishing fires with low frequency sound vibrations and a device for its implementation
KR102047297B1 (en) Sonic fire extinguisher using ultrasonic wave
PL233025B1 (en) Device for flames suppression with acoustic waves
JP3352632B2 (en) Ultrasonic irradiation device
Ito The motion of high-intensity aerial ultrasonic waves (20 kHz) entering a perforation
JPH02289244A (en) Localized breaking device for flexible structure, using elastic wave with negative pressure
RU2773650C1 (en) Sound fire extinguisher

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase