WO2013180368A1 - Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage - Google Patents

Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage Download PDF

Info

Publication number
WO2013180368A1
WO2013180368A1 PCT/KR2012/011424 KR2012011424W WO2013180368A1 WO 2013180368 A1 WO2013180368 A1 WO 2013180368A1 KR 2012011424 W KR2012011424 W KR 2012011424W WO 2013180368 A1 WO2013180368 A1 WO 2013180368A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mineral
salt
magnesium
seawater
Prior art date
Application number
PCT/KR2012/011424
Other languages
French (fr)
Korean (ko)
Inventor
문덕수
김현주
이승원
정동호
이호생
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120057337A external-priority patent/KR101367477B1/en
Priority claimed from KR1020120057345A external-priority patent/KR101295445B1/en
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to JP2015503096A priority Critical patent/JP5919432B2/en
Publication of WO2013180368A1 publication Critical patent/WO2013180368A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention adjusts the hydrogen ion concentration of alkaline water produced by electrolysis of seawater or deep seawater and concentrated seawater to form calcium salt and magnesium salt precipitates for each hydrogen ion concentration and low energy of seawater or deep sea water and concentrated water in the sedimentation tank.
  • the present invention relates to a method for separating and extracting calcium salts and magnesium salts, and a method for preparing mineral salts and mineral drinks using the same.
  • deep ocean water is a seawater that exists at a depth of 200m or more, where sunlight does not reach, and it is separated by the ocean physical structure that is far from the coast and does not mix with the atmosphere or surface water (river water) due to surface and water temperature and density difference.
  • deep ocean water is known to be a marine water resource that has been kept clean for a long time because it is structurally blocked from contaminating inflow sources such as human origin chemical pollutants (organic compounds such as pathogens and fertilizer pesticides).
  • deep sea water contains various minerals such as zinc, selenium, and manganese, as well as four major minerals (magnesium, calcium, potassium, and sodium), which are known to be useful as natural mineral raw materials through water quality control desalination. have.
  • Minerals such as calcium, magnesium and potassium are one of the five major nutrients required by humans as important elements that play a role in body composition and function of the body.
  • calcium is responsible for bone and tooth formation, muscle, nerve and heart function, blood coagulation, etc., deficiency constipation, osteoporosis, developmental disorders, spasms, cavities, nerves Symptoms such as anxiety occur.
  • Magnesium Magnesium (Magnesium, Mg 2+ ) performs the functions of energy production, nervous function control, vitamin B, E metabolism, etc.In deficiency, heart disease, hypertension, nephrolithiasis, insomnia, arrhythmia, hypotension, loss of appetite, muscle pain, Anemia and the like.
  • Potassium performs functions such as regulating intracellular acid group balance, controlling water, maintaining nerve function, preserving cellular function, expanding blood vessels, and supplying oxygen to the brain, and deficiency of arrhythmia, loss of appetite, and muscle spasms. , Constipation, fatigue, asthenia, hypoglycemia, etc. occur.
  • Seawater desalination methods include evaporation, reverse osmosis and electrodialysis.
  • the evaporation method uses the principle of evaporating seawater to evaporate the solvent and the solute.
  • the reverse osmosis membrane method removes salt from the ionic substance dissolved in water using a membrane membrane and passes only pure water.
  • anion membranes and cationic membranes are alternately arranged, and a DC voltage is applied to electrodes positioned at both ends of the anion membrane and the cationic membrane to remove cations and anions to obtain pure fresh water.
  • the conventional method of extracting minerals from seawater was to extract minerals from seawater by separating the mineral salts such as calcium salts and magnesium salts by evaporating and concentrating seawater (deep water).
  • the present invention removes chlorine ions and sulfate ions from seawater or deep sea water and separates and extracts useful minerals such as calcium, magnesium and potassium, and at the same time increases the recovery rate of useful mineral constituents to reduce the energy while increasing the purity of mineral salts.
  • the present invention relates to an efficient separation extraction method and a method for producing a high hardness mineral beverage meeting the drinking water quality standard using the same.
  • the present invention generates precipitates of calcium salts and magnesium for each hydrogen ion concentration in alkaline water adjusted by hydrogen ion electrolysis method (pH) from sodium water (sea deep water) in the precipitation tank
  • PH hydrogen ion electrolysis method
  • the method for producing mineral salts according to the present invention can separate and extract high purity mineral calcium salts and magnesium salts from seawater or deep sea water with low cost energy, and separate the mineral salts, chlorine and sulfate ions into the water quality standards for drinking water. It is possible to produce suitable high hardness mineral water, and to efficiently produce mineral raw materials of various products including useful minerals such as calcium and magnesium in seawater.
  • 1 is an overall process diagram showing a method for preparing mineral salts and mineral water in the electrolytic alkaline water of the present invention.
  • FIG. 2 is a schematic diagram of a membrane-free electrolysis device for generating electrolyzed water for generating electrolyzed water and adjusting hydrogen ion concentration (pH).
  • Figure 3 is a sedimentation separation tank for separating the mineral salt produced in the hydrogen ion concentration adjusted alkaline water.
  • Figure 4 is a process chart combining the NF-RO-ED process and MVR-precipitation separation process for improving the mineral salt production yield.
  • Figure 5 is a photograph showing the membrane-free electrolytic decomposition device and each structure of the electrolytic water generation.
  • Figure 6 shows the concentration changes of magnesium and calcium in the mineral salts formed for each hydrogen ion concentration.
  • the present invention is to adjust the pH in the alkaline water produced by electrolysis of seawater (deep sea water or concentrated water) to produce a magnesium salt and calcium salt precipitate to concentrate and separate the natural mineral food raw material and It relates to a method for producing mineral-added raw materials of deep sea water to eat.
  • the pretreatment of step 1) may be any one or more selected from sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), and ultra filter (UF), and the primary treatment is reverse osmosis membrane.
  • MF micro filter
  • SMF immersion membrane filter
  • UF ultra filter
  • the primary treatment is reverse osmosis membrane.
  • RO concentrated water and production water using
  • step 2) after the first treatment of reverse osmosis membrane (RO) or electrodialysis membrane, electrolyzed concentrated water to prepare acidic and alkaline water, instead of concentrated water, raw water of seawater or deep seawater or concentrated water using NF-RO. And it may further comprise the step of preparing acidic water and alkaline water after electrolysis using mineral concentrated water produced by the reduced pressure evaporation distillation method.
  • RO reverse osmosis membrane
  • electrod concentrated water to prepare acidic and alkaline water, instead of concentrated water, raw water of seawater or deep seawater or concentrated water using NF-RO.
  • it may further comprise the step of preparing acidic water and alkaline water after electrolysis using mineral concentrated water produced by the reduced pressure evaporation distillation method.
  • a certain ratio of step 5) is a magnesium / calcium ratio of 0.01-40.72, useful mineral salt prepared in this step is useful minerals, characterized in that the addition of at least one additive selected from citric acid, vitamin preparation, orange powder Methods of preparing salts are provided.
  • a method of preparing a mineral supplement beverage by dissolving citric acid or orange extract in the production water of step 6) may be added.
  • the mineral beverage production method by producing a by-product in the step of producing an alkaline water of hydrogen ion concentration (pH) 10 to 13 by adjusting the amount of current when the alkaline water of step 3)
  • the acidic water can be transformed into a step that can be used as a disinfectant.
  • the mineral supplement tablet or powder product may be added by adding citric acid, vitamin preparation, orange powder, etc. to a useful mineral salt preparation method of adjusting calcium and magnesium concentrations by mixing calcium salt and magnesium salt of step 5). It can be modified by the manufacturing method of.
  • the production of concentrated water in step 1) includes preparing first concentrated water and primary produced water by passing seawater or deep sea water through a reverse osmosis membrane (RO) after pretreatment; By passing the first concentrated water back to the ion exchange membrane (ED) it can be made to produce a high concentration of the second concentrated water, characterized in that the amount of current flowing during the electrolysis of step 2) is 50-260 mA.
  • RO reverse osmosis membrane
  • the concentrated water of step 1) is a pre-treatment process using a nano-filter (NF), ultra-filter (UF) membrane to remove only sulfate ions (SO4) and the remaining sodium, magnesium, calcium, potassium, chlorine ions are permeated
  • NF nano-filter
  • UF ultra-filter
  • SO4 sulfate ions
  • SO4 sodium, magnesium, calcium, potassium, chlorine ions
  • RO reverse osmosis membrane
  • a method for producing a mineral beverage in which the components of the calcium salt are adjusted can be provided.
  • FIG. 1 is an overall process diagram showing a method for producing mineral salts and mineral water in the electrolytic alkaline water of the present invention
  • Figure 2 is a membrane-free electrolysis device for generating electrolytic water for the production of electrolytic water and hydrogen ion concentration (pH) adjustment
  • the schematic diagram of the is shown.
  • the mineral water of the present invention is meant to include bottled water and various beverages, the method of producing mineral water of the present invention by passing the seawater (sea deep sea water) through the primary RO (reverse osmosis membrane) after pretreatment, the primary concentrated water and primary Preparing a production water and passing the first concentrated water through ED (ion exchange membrane) to produce a second concentrated water of high concentration.
  • the flow of the whole process of the present invention is pre-treatment of seawater or deep seawater (filtered by sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), ultra filter (UF), etc.), RO (reverse osmosis membrane) Concentrated and produced water by passing through NF-RO membrane (nano filter-reverse osmosis composite membrane), electrodialysis membrane (ED) and electrolyzed concentrated water as it is, ED (ion dialysis membrane) or MVR (reduced vapor recompression) The concentrated water is re-concentrated by the evaporation method to prepare a high-concentrated concentrated water and electrolyzed to prepare acidic and alkaline water (FIG. 1).
  • NF-RO membrane nano filter-reverse osmosis composite membrane
  • ED electrodialysis membrane
  • MVR reduced vapor recompression
  • Acid and alkaline water are prepared by electrolyzing concentrated water and concentrated water using a membrane-free decomposition device for producing electrolytic water.
  • the current amount is adjusted to adjust the pH of the alkaline water to produce mineral salts having different calcium and magnesium components for each pH (FIG. 2).
  • Figure 3 shows a sedimentation separation tank for separating the mineral salts produced in the hydrogen ion concentration adjusted alkaline water.
  • the mineral salt precipitate formed is collected at the bottom of the conical bottom of the sedimentation tank.
  • the sedimentation tank without disturbing the mineral salt deposited on the bottom by using the supernatant removal discharge device 15 cm above the conical bottom of the sedimentation tank.
  • the seawater or the deep seawater was separated from the concentrated water (Fig. 3).
  • Mineral precipitates separated in the sedimentation tank were centrifuged using a centrifuge, dried in a hot air dryer, and then powdered to prepare mineral salts.
  • mineral salts dried by pH magnesium: calcium ratio 0.01-0.4 at pH 10 or less, magnesium: calcium ratio 0.4-1.8 at pH 11, magnesium: calcium ratio 1.8-3.8 at pH 12, magnesium: calcium ratio at pH 13 and above
  • the separation of calcium and magnesium occurs between 3.8 and 40.72.
  • mineral salts having different concentrations of magnesium to calcium are prepared by mixing and adjusting mineral salts having different magnesium and calcium concentrations according to hydrogen ion concentration (pH).
  • a calcium salt having a purity of 90% or more, a mineral salt having a magnesium to calcium ratio in the range of 0.1 to 50, a magnesium salt having a magnesium concentration of 98% or more, and the like are prepared.
  • mineral salt with adjusted mineral content is dissolved in demineralized water to produce high hardness mineral water with hardness up to 1200 with calcium and magnesium composition adjusted.
  • Manufacture Since mineral salts have already been separated and removed from the ions of drinking water quality standards such as sodium ions, boron ions, chlorine ions, and sulfate ions when mineral salts are manufactured, the hard mineral mineral water prepared using these mineral salts is Manufacture hard mineral mineral water that meets drinking water quality standards.
  • mineral-enriched mineral mixed drinks can also be prepared.
  • NF nano sulfate
  • UF ultra filter
  • Filtration of the water through the reverse osmosis membrane comprises the steps of preparing a concentrated water in which only SO 4 2- is removed and the remaining salts (sodium, potassium, calcium, magnesium, etc.) are concentrated.
  • the conventional reverse osmosis membrane process is simple, the concentration of the concentrated water is low, and there are problems such as the inclusion of sulfate ion (SO 4 2- ) in the concentrated water, and the ion exchange membrane process (ED) uses the concentration of the reverse osmosis membrane. It can be higher than the process, but there were problems of purity such as mineral separation.
  • a process of manufacturing a high-efficiency mineral salt and high hardness mineral water is performed by combining a nano filter membrane (NF)-reverse osmosis membrane (RO)-electrodialysis membrane (ED) process.
  • NF nano filter membrane
  • RO reverse osmosis membrane
  • ED electrolysis membrane
  • Figure 4 shows a process chart combining the NF-RO-ED process and MVR-precipitation separation process for improving the mineral salt production yield. Obtained the production water from which sulfate ions were removed through the primary nanofilter membrane, and producing high-purity production water (demineralized water) and concentrated water from which 7% or more sulfate ions were removed through the second reverse osmosis membrane process, and thirdly, ED (ion exchange membrane). The process produces a concentrated water of at least 14% with (SO 4 2- ) removed. The concentrated water is evaporated and crystallized through MVR (Decomposition Evaporation Distillation Method), and the purified supernatant with high concentration of magnesium is separated and purified to prepare mineral concentrated water (hardness of 100,000 or more).
  • MVR Decomposition Evaporation Distillation Method
  • the quality of the water produced depends on how much sulfate ions (SO 4 2- ) are contained, the desalination and the balance of potassium, calcium and magnesium content.
  • SO 4 2- sulfate ions
  • highly concentrated water with significantly reduced sulfur content could be used for mineral extraction, and it can be seen that only a part of calcium crystallization remains as mineral concentrated water during crystallization.
  • Removal of sulfate ions has the advantage that there is no inconvenience to crystallize and re-dissolve calcium during the crystallization process.
  • Table 4 Composition and Comparison of Water Quality Standards of Hardened Mineral Water Using Mineral-Adjusted Salts division ingredient unit Mineral demineralized water according to the present invention (based on hardness 4,353) Mineral demineralized water prepared by the existing method (based on hardness 3,721) High hardness mineral water produced by the present invention (based on 1,000 hardness) Deep sea water quality standards to eat Elemental ingredient Sodium (Na) mg / L 14 600 3.0 - Magnesium (Mg) mg / L 790 801 182 - Calcium (Ca) mg / L 440 167 101 - Potassium (K) mg / L ND 160 ND - Hazardous Effects Nitrate mg / L ND ND ND 10 Boron (B) mg / L 0.04 0.029 0.0203 1.0 Arsenic (As) mg / L 0.003 0.0002 0.001 0.05 Lead (Pb) mg / L 0.002 0.0002 0.0003 0.05 Selenium (Se) mg /
  • the method for preparing the mineral salt and the mineral water of the present invention includes preparing a mineral salt by electrolyzing the secondary concentrated water and adjusting and crystallizing the mineral (calcium, magnesium, potassium) component using a precipitation separation system.
  • Existing evaporative concentration methods include direct evaporation (flat type) by generating direct thermal energy and indirect evaporation using steam, and indirect evaporation using steam (Mechanical Vapor Recompressor) method. There is a way to maximize energy efficiency.
  • energy of 10,750,000kcal of flat type, 5,750,000kcal of steam type, 1,380,000kcal of multistage vacuum type and 500,000kcal of MVR method is used.
  • MVR method is used for steam input-evaporative concentration-mechanical recompression (temperature rise)-evaporative concentration-mechanical recompression (temperature rise)-evaporative concentration.
  • the energy consumed in the electrolysis sedimentation process consumes about 1.0 kw, which translates into 1,700 kcal.
  • the electrolytic sedimentation method can be used to drastically reduce the energy required during the mineral salt manufacturing process.
  • the electrolyzed water generator consists of a control panel for electrolyzed water generation, electrolyzed water generating diaphragm electrolysis tank, seawater and concentrated water supply line, circulation pump, alkaline and acidic water generating tank, strong aliphatic and strong acidic water discharge line, and water level sensor of the tank. have.
  • Figure 5 shows a membrane-free electrolytic decomposition device and each structure of the electrolytic water generation.
  • the ammeter must be at least 260 mA before it can be produced. However, if the minimum water level is too low, the amount of waste water discarded after the operation setting time will be large, and much time is required to increase the ammeter value. On the contrary, if the minimum water level sensor is placed too high, the amount of water discarded is small, so the amount of supplemental water is small, and the amount of chlorine ions taken from the septum may be less and the pH value may be lowered.
  • the pH value can be adjusted according to the amount of current as follows.
  • the device If you set the operation time of the electrolyzer to 30 minutes and the time interval for entering the metering pump to 10 minutes, the device operates after 30 minutes of operation.
  • the metering pump is operated three times in 30 minutes and produces about 400 ml of alkaline water at one time.
  • the hydrogen ion concentration of the electrolyzed alkaline water of seawater or deep sea water concentrated water it is possible to produce mineral salts with different composition of calcium and magnesium content at each pH, which is then transferred to the settling tank to precipitate the generated salts. Separated with deep water concentrate.
  • the volume of the sedimentation tank is about 100 liters, and the upper part is cylindrical and the lower part is conical.
  • the mineral salt precipitates are collected at the bottom of the conical bottom of the sedimentation tank. Separate from the concentrated seawater or the deep seawater of the sedimentation tank without disturbing the mineral salts.
  • Mineral precipitates separated in the sedimentation tank were centrifuged using a centrifuge, dried in a hot air dryer, and then powdered to prepare mineral salts.
  • the mineral salt produced and separated and dried at pH 10 was 9.24% of magnesium and 23.1% of calcium. Most of the minerals formed as magnesium / calcium ratio 0.4 were calcium.
  • the mineral salt formed consisted of 21% magnesium and 12% calcium, with a magnesium / calcium ratio of 2.0.
  • Mineral salts formed at pH 12 consisted of 26.7% magnesium and 7.2% calcium, with a magnesium: calcium ratio of 3.7.
  • the mineral salt formed was 30.7% magnesium, 4.4% calcium, and the magnesium: calcium ratio was 7.0, resulting in the separation of calcium and magnesium, accounting for 82% of the total cationic minerals.
  • the concentration change of magnesium and calcium according to pH in the mineral salt formed by adjusting the hydrogen ion concentration is shown in FIG. 6.
  • Magnesium increased with increasing hydrogen ion concentration from 10 to 13, while calcium concentration decreased. Therefore, by adjusting the hydrogen ion concentration (pH) of the alkali water it was possible to adjust the ratio of magnesium and calcium in the mineral salt produced.
  • the mineral salts produced were analyzed for mineral mineral crystals using a Multi purpose X-ray Diffractometer (MP-XRD). The analysis conditions were X-ray power of 45 KV / 30mA, Scan Mode of ⁇ / 2 ⁇ , and Scan range of 10-100 deg (2 ⁇ ). Since most of the mineral crystals formed are in the form of calcium carbonate, magnesium hydroxide and calcium hydroxide, they are mostly separated from chlorine and sulfate ions, which are water quality standards for drinking water (FIG. 8).
  • the mineral salts having different magnesium and calcium concentrations were mixed and adjusted according to hydrogen ion concentration (pH) to prepare mineral salts in which the concentration ratio of magnesium to calcium was adjusted.
  • magnesium having a Mg / Ca ratio of 0.40 formed at a hydrogen ion concentration (pH) of 10 and a calcium calcium salt of 23% as a main component and magnesium having a Mg / Ca ratio of 6.9 at a hydrogen ion concentration (pH) of 13 are magnesium
  • By mixing 77% of the mineral salts it was possible to prepare a mineral salt having a magnesium content of 25.7%, a calcium content of 8.7%, and a Mg / Ca ratio of 3.0.
  • the mineral salts with the mineral content adjusted are mixed with citric acid powder, vitamin powder, fruit extract powder, green tea powder and the like (tablet) Or it could be manufactured in powder fabric.
  • 10.0 grams of mineral salts were dissolved in 1 liter of demineralized water (hardness 80). Up to 4,350 demineralized brine was prepared. This is again diluted with 2 liter demineralized water to produce 3 liters of hard mineral mineral water. Since the mineral salts have already been separated and removed from the ions of drinking water quality standards such as strontium, boron ions, chlorine ions, and sulfate ions when the mineral salts are manufactured, the hard mineral mineral water prepared by dissolving these mineral salts in demineralized water is eaten up to a hardness of 1,000 or more. It satisfies the water quality standards prescribed by the Water Management Act. Drinking water quality standards are shown in Table 4.

Abstract

The present invention relates to a method for manufacturing a natural mineral food raw material and an edible raw material to which deep seawater minerals are added, by adjusting the pH of alkaline water produced by electrolyzing seawater, deep seawater, or condensed seawater, producing a magnesium salt and calcium salt precipitate, and condensing and separating same, and more particularly, to a method for manufacturing a high hardness mineral beverage and a mineral beverage having the magnesium and calcium content adjusted, wherein the method comprises the steps of: pre-treating seawater or deep seawater and then initially passing said seawater through a reverse osmosis (RO) membrane in order to manufacture condensed water and membrane-filtered water; electrolyzing the condensed water in order to manufacture acidic water and alkaline water; adjusting the amount of current during the manufacture of the alkaline water in order to produce alkaline water having a hydrogen ion concentration (pH) of between 10 and 13; producing the alkaline water having a hydrogen ion concentration of between 10 and 13, producing calcium salt and magnesium salt for each pH level in a precipitation chamber, and precipitating and separating same; and mixing the separated calcium salt and magnesium salt and dissolving same in deionized water.

Description

해수 전기분해 알칼리 수로부터 마그네슘염과 칼슘염을 포함한 미네랄 염의 분리 및 이를 이용한 미네랄음료의 제조방법 Separation of Mineral Salts Including Magnesium Salt and Calcium Salt from Seawater Electrolysis Alkaline Water and Method of Manufacturing Mineral Drink Using the Same
본 발명은 해수 또는 해양심층수 및 해수 농축수의 전기분해를 통해 생산된 알카리수의 수소이온농도를 조정하여 수소이온농도별로 칼슘염과 마그네슘염 침전물을 형성하고 침전조에서 해수 또는 해양심층수와 농축수를 저에너지 고효율로 분리함으로서 칼슘염과 마그네슘염의 분리 추출 방법 및 이를 이용한 미네랄 염과 미네랄음료의 제조 방법에 관한 것이다.The present invention adjusts the hydrogen ion concentration of alkaline water produced by electrolysis of seawater or deep seawater and concentrated seawater to form calcium salt and magnesium salt precipitates for each hydrogen ion concentration and low energy of seawater or deep sea water and concentrated water in the sedimentation tank. The present invention relates to a method for separating and extracting calcium salts and magnesium salts, and a method for preparing mineral salts and mineral drinks using the same.
일반 해수 1.0 kg에는 평균적으로 965 g (96.5 %)가 물이고 염소이온은 18.98 g (1.9%), 나트륨이온은 10.556 g (Na+, 1.1%), 황산이온은 2.649 g (SO42-, 0.3%), 마그네슘이온은 1.272 g (Mg2+, 0.1%), 칼슘이온은 0.400 g (Ca2+, 0.04%), 칼륨이온은 0.38 g (K+, 0.04 %), 중탄산 이온은 0.14 g (HCO3-, 0.01 %) 으로, 이상과 같은 주성분 이온이 3.4% 용존되어 있으며 나머지 0.1 % 는 미량금속이 용해되어 존재하며 총 92 종 용존물질이 해수에 존재하는 것으로 알려져 있다. For 1.0 kg of normal seawater, on average 965 g (96.5%) is water, 18.98 g (1.9%) for chlorine ions, 10.556 g (Na + , 1.1%) for sodium ions, 2.649 g (SO42-, 0.3%) for sulfate ), Magnesium ion is 1.272 g (Mg2 +, 0.1%), calcium ion is 0.400 g (Ca2 +, 0.04%), potassium ion is 0.38 g (K +, 0.04%), bicarbonate ion is 0.14 g (HCO3-, 0.01%) As the main component ion is dissolved in 3.4% and the remaining 0.1% is dissolved in trace metals, a total of 92 species are known to exist in seawater.
특히, 해양 심층수란 태양광이 도달하지 않는 수심 200m 이상의 깊은 곳에 부존하는 바닷물로, 연안으로 멀리 떨어져 있고 표층수와 수온과 밀도차이에 의해 대기 또는 지표수 (강물)과 혼합되지 않는 해양물리적인 구조에 의해, 해양심층수는 인류기원 화학오염물질 (병원균과 비료 농약과 같은 유기화합물)과 같은 오염 유입원으로부터 구조적으로 차단되어 있어 청정(淸淨) 특성을 오랜 시간 동안 유지한 해양 수자원으로 알려져 있다. 특히, 해양 심층수에는 청정한 4대 미네랄(마그네슘, 칼슘, 칼륨, 나트륨)을 비롯하여, 아연, 셀렌, 망간 등의 각종 미네랄 성분이 포함되어 있으므로, 수질조정 담수화 과정을 통한 천연 미네랄 원료 원으로 유용한 것으로 알려져 있다.In particular, deep ocean water is a seawater that exists at a depth of 200m or more, where sunlight does not reach, and it is separated by the ocean physical structure that is far from the coast and does not mix with the atmosphere or surface water (river water) due to surface and water temperature and density difference. In addition, deep ocean water is known to be a marine water resource that has been kept clean for a long time because it is structurally blocked from contaminating inflow sources such as human origin chemical pollutants (organic compounds such as pathogens and fertilizer pesticides). In particular, deep sea water contains various minerals such as zinc, selenium, and manganese, as well as four major minerals (magnesium, calcium, potassium, and sodium), which are known to be useful as natural mineral raw materials through water quality control desalination. have.
미네랄의 결핍 및 과잉은 각종 질병을 야기하는 원인이 되고 신체적, 정신적 발달을 저해함으로, 체내의 미네랄 밸런스(Mineral balance)를 유지하는 것이 중요하다. 칼슘, 마그네슘과 칼륨과 같은 미네랄은 신체 구성, 신체 기능 조절 등의 역할을 수행하는 중요한 원소로서 인간에게 필요한 5대 영양소 중의 하나이다. Deficiency and excess of minerals cause various diseases and inhibit physical and mental development, it is important to maintain the mineral balance in the body. Minerals such as calcium, magnesium and potassium are one of the five major nutrients required by humans as important elements that play a role in body composition and function of the body.
미네랄 성분 중에서 칼슘(calcium, Ca2+)은 뼈와 치아형성, 근육, 신경 및 심장의 기능 조절, 혈액응고 촉진 등의 기능을 하며, 결핍 시에는 변비, 골다공증, 발육장애, 경련, 충치, 신경 불안증 등의 증상이 발생한다. 마그네슘(magnesium, Mg2+)은 에너지 생성, 신경기능 조절, 비타민 B, E 대사의 촉진 등의 기능을 수행하며, 결핍 시에는 심장병, 고혈압, 신결석, 불면증, 부정맥, 저혈압, 식욕상실, 근육통, 빈혈 등이 발생한다. 칼륨(potassium, K+)은 세포내 산염기 평형 조절, 수분조절, 신경기능 유지, 세포기능 보존, 혈관확장, 뇌의 산소공급 등의 기능을 수행하며, 결핍 시에는 부정맥, 식욕감퇴, 근육경련, 변비, 피로, 무력증, 저혈당증 등이 발생한다.Among the minerals, calcium (calcium, Ca 2+ ) is responsible for bone and tooth formation, muscle, nerve and heart function, blood coagulation, etc., deficiency constipation, osteoporosis, developmental disorders, spasms, cavities, nerves Symptoms such as anxiety occur. Magnesium (Magnesium, Mg 2+ ) performs the functions of energy production, nervous function control, vitamin B, E metabolism, etc.In deficiency, heart disease, hypertension, nephrolithiasis, insomnia, arrhythmia, hypotension, loss of appetite, muscle pain, Anemia and the like. Potassium (potassium, K + ) performs functions such as regulating intracellular acid group balance, controlling water, maintaining nerve function, preserving cellular function, expanding blood vessels, and supplying oxygen to the brain, and deficiency of arrhythmia, loss of appetite, and muscle spasms. , Constipation, fatigue, asthenia, hypoglycemia, etc. occur.
해수 또는 해양심층수에 포함된 미네랄 성분은 잘못된 식이습관, 환경오염 등으로 인해, 미네랄 밸런스가 무너진 현대인에게 매우 유용한 미네랄 공급원이 될 수 있다. 그러나 해수의 경우, 상당량의 염분(NaCl)을 포함하므로, 염분을 제거하는 담수화 과정에서, 유용한 미네랄 성분인 칼륨, 칼슘, 마그네슘 등이 함께 제거되는 문제가 있다.Minerals in seawater or deep sea water can be a very useful source of minerals for modern people whose mineral balances are compromised due to poor dietary habits and environmental pollution. However, since seawater contains a significant amount of salt (NaCl), there is a problem that potassium, calcium, magnesium, and the like, which are useful mineral components, are removed together during desalination to remove salt.
해수의 담수화 방법으로는 증발법, 역삼투막법, 전기투석법 등이 있다. 증발법은 해수를 증발시켜 용매인 물은 증발시키고, 용질은 잔류시키는 원리를 이용하는 것이며, 역삼투막법은 물에 용해되어 있는 이온성 물질을 멤브레인 막을 이용하여 염은 배제하고, 순수한 물만 통과시키는 방법이며, 전기투석법은 음이온막과 양이온막을 교대로 배치한 후, 음이온막과 양이온막의 양단에 위치한 전극에 직류전압을 걸어, 양이온 및 음이온을 제거하여, 순수한 담수를 얻는 방법이다. Seawater desalination methods include evaporation, reverse osmosis and electrodialysis. The evaporation method uses the principle of evaporating seawater to evaporate the solvent and the solute. The reverse osmosis membrane method removes salt from the ionic substance dissolved in water using a membrane membrane and passes only pure water. In the electrodialysis method, anion membranes and cationic membranes are alternately arranged, and a DC voltage is applied to electrodes positioned at both ends of the anion membrane and the cationic membrane to remove cations and anions to obtain pure fresh water.
또한 기존 해수 중 미네랄추출 분리 방법은 해수 (심층수)를 증발 농축하여 용해도의 차이를 이용하여 칼슘염과 마그네슘염 등과 같은 미네랄염을 분리하는 방법으로 해수중 미네랄을 추출하는 방법이었다. In addition, the conventional method of extracting minerals from seawater was to extract minerals from seawater by separating the mineral salts such as calcium salts and magnesium salts by evaporating and concentrating seawater (deep water).
그러나 이들 담수화 방법을 사용할 경우에는, 해수에 포함된 각종 미네랄 성분 중에서 칼슘과 마그네슘을 효율적으로 분리하기 어려우며, 미네랄 성분의 회수율이 낮고 에너지가 많이 소요되는 단점이 있다. 또한 상기와 같은 담수화 방식과 미네랄 추출 방식으로 추출된 미네랄 염은 음이온인 염소이온 (Cl-) 과 황산이온 (SO4 2-)이 제거되지 않고 양이온과 결합하여 염을 형성하기 때문에 이러한 미네랄염을 다시 용해하여 미네랄 수를 제조할 때에는 먹는물 수질기준 항목인 염소이온과 황산이온이 재용해되기 때문에 경도 400 이상의 고경도 미네랄워터의 제조가 불가능한 단점이 있다. However, when using these desalination methods, it is difficult to efficiently separate calcium and magnesium from various mineral components included in seawater, and the recovery rate of the mineral components is low and energy is consumed. In addition, the mineral salts extracted by the desalination method and the mineral extraction method do not remove anions such as chlorine ions (Cl-) and sulfate ions (SO 4 2- ) and combine with cations to form salts. When re-dissolving to produce mineral water, there is a disadvantage that it is impossible to manufacture a high hardness mineral water of hardness 400 or more because the chlorine ions and sulfate ions, which are drinking water quality criteria items, are redissolved.
본 발명은 해수 또는 해양심층수로부터 염소이온과 황산이온을 배제하고 칼슘, 마그네슘과 칼륨 등과 같은 유용 미네랄을 나트륨 분리 추출함과 동시에 유용 미네랄 성분의 회수율을 높여 에너지를 저감하면서 순도를 높이는 방식으로 미네랄 염의 효율적인 분리 추출 방법 및 이를 이용한 먹는 물 수질기준을 충족하는 고경도 미네랄음료 제조 방법에 관한 것이다.The present invention removes chlorine ions and sulfate ions from seawater or deep sea water and separates and extracts useful minerals such as calcium, magnesium and potassium, and at the same time increases the recovery rate of useful mineral constituents to reduce the energy while increasing the purity of mineral salts. The present invention relates to an efficient separation extraction method and a method for producing a high hardness mineral beverage meeting the drinking water quality standard using the same.
상기 과제를 해결하기 위해, 본 발명은 해수의 전기분해 방법에 의해 수소이온농도(pH)을 조정한 알카리수에서 수소이온농도 별로 칼슘염과 마그네슘의 침전물을 생성하여 침전조에서 해수 (해양심층수)로부터 나트륨과 염소이온, 황산이온과 분리함으로서, 미네랄 염 생산 에너지 비용을 줄이면서, 먹는 물 수질기준에 적합한 순도가 높은 고경도 미네랄 음료 제조방법을 제공한다.In order to solve the above problems, the present invention generates precipitates of calcium salts and magnesium for each hydrogen ion concentration in alkaline water adjusted by hydrogen ion electrolysis method (pH) from sodium water (sea deep water) in the precipitation tank By separating with chlorine and sulfate ions, it provides a high-purity, high-hardness mineral beverage manufacturing method suitable for drinking water quality standards, while reducing the energy cost of mineral salt production.
본 발명에 의한 미네랄염의 제조 방법은 해수 또는 해양심층수로부터 순도가 높은 미네랄 칼슘염과 마그네슘 염을 저비용의 에너지로 분리 추출할 수 있고, 미네랄염과 염소이온과 황산이온을 분리함으로서 먹는물 수질기준에 적합한 고경도 미네랄워터의 제조가 가능하며, 칼슘과 마그네슘과 같은 유용 미네랄을 포함하는 다양한 제품의 미네랄원료를 해수에서 효율적으로 생산하는 것이 가능하다.The method for producing mineral salts according to the present invention can separate and extract high purity mineral calcium salts and magnesium salts from seawater or deep sea water with low cost energy, and separate the mineral salts, chlorine and sulfate ions into the water quality standards for drinking water. It is possible to produce suitable high hardness mineral water, and to efficiently produce mineral raw materials of various products including useful minerals such as calcium and magnesium in seawater.
도 1은 본 발명의 전기분해 알카리수에서 미네랄 함량 조정 미네랄염 및 미네랄워터의 제조 방법을 나타내는 전체 공정도이다.1 is an overall process diagram showing a method for preparing mineral salts and mineral water in the electrolytic alkaline water of the present invention.
도 2는 전해수 생성 및 수소이온농도 (pH) 조정을 위한 전해수 생성용 무격막 전기분해 장치의 모식도이다.2 is a schematic diagram of a membrane-free electrolysis device for generating electrolyzed water for generating electrolyzed water and adjusting hydrogen ion concentration (pH).
도 3은 수소이온농도 조정 알카리수에서 생성된 미네랄염을 분리하기 위한 침전분리조이다.Figure 3 is a sedimentation separation tank for separating the mineral salt produced in the hydrogen ion concentration adjusted alkaline water.
도 4는 미네랄염 생성 수율 향상을 위한 NF-RO-ED 공정와 MVR-침전분리 공정을 결합한 공정도이다.Figure 4 is a process chart combining the NF-RO-ED process and MVR-precipitation separation process for improving the mineral salt production yield.
도 5는 전해수 생성용 무격막 전해 분해장치 및 각부구조를 나타낸 사진이다. Figure 5 is a photograph showing the membrane-free electrolytic decomposition device and each structure of the electrolytic water generation.
도 6은 수소이온농도별로 형성되는 미네랄염에서의 마그네슘과 칼슘의 농도 변화를 나타낸다.Figure 6 shows the concentration changes of magnesium and calcium in the mineral salts formed for each hydrogen ion concentration.
도 7은 수소이온농도 조정에 따라 형성된 미네랄염의 XRD Spectrum (@pH=10)을 나타낸다.Figure 7 shows the XRD Spectrum (@pH = 10) of the mineral salt formed by adjusting the hydrogen ion concentration.
본 발명의 목적을 달성하기 위하여, 본 발명은 해수(해양심층수 원수 또는 농축수)를 전기분해하여 생성되는 알칼리수에서 pH을 조정하여 마그네슘염과 칼슘염 침전물을 생성하여 농축 분리하여 천연미네랄 식품 원료 및 먹는 해양심층수의 미네랄 첨가 원료의 제조방법에 관한 것이다. 미네랄음료 제조방법의 구성은 In order to achieve the object of the present invention, the present invention is to adjust the pH in the alkaline water produced by electrolysis of seawater (deep sea water or concentrated water) to produce a magnesium salt and calcium salt precipitate to concentrate and separate the natural mineral food raw material and It relates to a method for producing mineral-added raw materials of deep sea water to eat. The composition of the mineral beverage manufacturing method
1) 해수 또는 해양심층수를 전처리 한 후 1차 처리하여 농축수와 생산수를 제조하는 단계; 1) pre-treatment of seawater or deep seawater to produce concentrated water and produced water by primary treatment;
2) 상기 농축수를 전기분해하여 산성수와 알칼리수를 제조하는 단계; 2) preparing an acidic water and an alkaline water by electrolyzing the concentrated water;
3) 상기 알칼리 수 제조시 전기분해는 전류량을 조절하여 수소이온농도(pH) 10 에서 13 사이의 알칼리 수를 생산하는 단계;3) electrolysis in the production of alkaline water to adjust the amount of current to produce an alkaline water of hydrogen ion concentration (pH) 10 to 13;
4) 상기 수소이온농도(pH) 10 에서 13사이의 알칼리수를 생산하여 침전조에서 pH별로 각각 칼슘염, 마그네슘염을 생산하여 침전 분리하는 단계;4) producing alkaline water between 10 to 13 hydrogen ion concentration (pH) and producing calcium salt and magnesium salt for each pH in the precipitation tank to separate the precipitates;
5) 상기 분리된 칼슘염과 마그네슘염을 혼합하여 칼슘과 마그네슘이 조정된 유용 미네랄 염을 제조하는 단계;5) mixing the separated calcium salt and magnesium salt to prepare a useful mineral salt in which calcium and magnesium are adjusted;
6) 상기 1의 생산수에 상기 5)의 유용미네랄염을 용해시켜 고경도 미네랄음료 및 미네랄 함량 (마그네슘 : 칼슘)이 조정된 미네랄음료의 제조 방법으로 이루어진다.6) A method of producing a mineral beverage in which the useful mineral salt of 5) is dissolved in the production water of 1 and the mineral beverage with high hardness mineral content (magnesium: calcium) is adjusted.
또한, 상기 1) 단계의 전처리는 모래여과, 급속여과막, 마이크로필터(MF), 침지맴브레인필터(SMF), 울트라필터(UF) 중에서 선택되는 어느 하나 이상의 방법이 사용가능하고, 1차 처리는 역삼투막 (RO)을 이용하여 농축수와 생산수를 생산하는 공정이외에 전기투석막, NF-RO막을 사용하여 생산수와 미네랄농축수를 생산하는 공정에서 선택될 수 있다.In addition, the pretreatment of step 1) may be any one or more selected from sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), and ultra filter (UF), and the primary treatment is reverse osmosis membrane. In addition to the production of concentrated water and production water using (RO), it can be selected in the process of producing production water and mineral concentrated water using electrodialysis membrane and NF-RO membrane.
상기 2) 단계에서 역삼투막(RO) 또는 전기투석막 등의 1차처리 후 농축수를 전기분해하여 산성수와 알카리수를 제조하는 단계에서 농축수 대신 해수 또는 해양심층수의 원수나 NF-RO을 이용한 농축수와 감압증발증류법에 의하여 생산된 미네랄농축수를 사용하여 전기분해 후 산성수와 알카리수를 제조하는 단계를 추가로 포함할 수 있다.In the step 2), after the first treatment of reverse osmosis membrane (RO) or electrodialysis membrane, electrolyzed concentrated water to prepare acidic and alkaline water, instead of concentrated water, raw water of seawater or deep seawater or concentrated water using NF-RO. And it may further comprise the step of preparing acidic water and alkaline water after electrolysis using mineral concentrated water produced by the reduced pressure evaporation distillation method.
또한, 5)단계의 일정비율은 마그네슘 / 칼슘 비가 0.01-40.72인 것이고, 이 단계에서 제조된 유용 미네랄 염에 구연산, 비타민제재, 오렌지분말 중에서 선택되는 하나 이상의 첨가물을 첨가하는 것을 특징으로 하는 유용 미네랄 염의 제조방법이 제공된다. In addition, a certain ratio of step 5) is a magnesium / calcium ratio of 0.01-40.72, useful mineral salt prepared in this step is useful minerals, characterized in that the addition of at least one additive selected from citric acid, vitamin preparation, orange powder Methods of preparing salts are provided.
본 발명의 일 구현 예로서 따른 미네랄 성분이 조정된 미네랄 염 제조 방법에서, 상기 6)단계의 생산수에 구연산을 용해하거나 오렌지 추출물을 용해하여 미네랄 보충 음료를 제조하는 방법이 추가 될 수 있다.In the method for preparing a mineral salt in which the mineral component is adjusted according to an embodiment of the present invention, a method of preparing a mineral supplement beverage by dissolving citric acid or orange extract in the production water of step 6) may be added.
한편 본 발명의 일 구현 예에 따른 미네랄 음료 제조 방법에서, 상기 3) 단계의 상기 알칼리수 제조 시에 전류량을 조절하여 수소이온농도(pH) 10 에서 13사이의 알카리 수를 생산하는 단계에서 부산물로 생산되는 산성수를 살균소독제로 사용할 수 있는 단계로 변형할 수 있다. On the other hand, in the mineral beverage production method according to an embodiment of the present invention, by producing a by-product in the step of producing an alkaline water of hydrogen ion concentration (pH) 10 to 13 by adjusting the amount of current when the alkaline water of step 3) The acidic water can be transformed into a step that can be used as a disinfectant.
또 다른 일 구현 예로서 상기 5)단계의 칼슘염과 마그네슘염을 혼합하여 칼슘과 마그네슘이 농도가 조정된 유용 미네랄 염 제조 방법에 구연산, 비타민제재, 오렌지분말 등을 첨가하여 미네랄 보충 정제 또는 분말 제품의 제조방법으로 변형할 수 있다.As another embodiment, the mineral supplement tablet or powder product may be added by adding citric acid, vitamin preparation, orange powder, etc. to a useful mineral salt preparation method of adjusting calcium and magnesium concentrations by mixing calcium salt and magnesium salt of step 5). It can be modified by the manufacturing method of.
또한 1)단계의 농축수 제조는 해수 또는 해양심층수를 전처리 후 역삼투막(RO)에 통과시켜 1차 농축수와 1차 생산수를 제조하는 단계; 1차 농축수를 다시 이온교환막(ED)에 통과시켜 고농도의 2차 농축수를 제조하는 것으로 이루어질수 있고, 2) 단계의 전기분해시 흘려주는 전류량은 50-260 mA인 것을 특징으로 한다.In addition, the production of concentrated water in step 1) includes preparing first concentrated water and primary produced water by passing seawater or deep sea water through a reverse osmosis membrane (RO) after pretreatment; By passing the first concentrated water back to the ion exchange membrane (ED) it can be made to produce a high concentration of the second concentrated water, characterized in that the amount of current flowing during the electrolysis of step 2) is 50-260 mA.
또한, 상기 1)단계의 농축수는 나노필터 (NF), 울트라필터(UF) 막을 이용하여 전처리 과정을 거쳐 황산이온(SO4)만 제거하고 나머지 나트륨, 마그네슘, 칼슘, 칼륨, 염소이온이 투과된 생산수를 다시 역삼투막(RO)을 통해 여과하여 농축할 수 있으며, 1) 단계의 생산수에 구연산, 식물 또는 과일 추출물 중에서 선택되는 하나 이상의 추출물과 5) 단계의 유용 미네랄 염을 용해시켜 마그네슘염과 칼슘염의 성분이 조정된 미네랄 음료의 제조 방법이 제공될 수 있다. 이하, 본 발명을 도면과 함께 상세히 설명하면 다음과 같다.In addition, the concentrated water of step 1) is a pre-treatment process using a nano-filter (NF), ultra-filter (UF) membrane to remove only sulfate ions (SO4) and the remaining sodium, magnesium, calcium, potassium, chlorine ions are permeated The produced water can be concentrated again by filtration through a reverse osmosis membrane (RO), dissolving one or more extracts selected from citric acid, plant or fruit extracts and 5) useful mineral salts in the produced water of step 1) A method for producing a mineral beverage in which the components of the calcium salt are adjusted can be provided. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 전기분해 알칼리수에서 미네랄 함량 조정 미네랄염 및 미네랄워터의 제조 방법을 나타내는 전체 공정도이고, 도 2는 전해수 생성 및 수소이온농도 (pH) 조정을 위한 전해수 생성용 무격막 전기분해 장치의 모식도를 나타낸다. 또한 본 발명의 미네랄 워터는 생수 및 각종 음료를 포함하는 의미이고, 본 발명의 미네랄 워터의 제조 방법은 해수 (해양심층수)를 전처리 후 1차 RO(역삼투막)에 통과시켜 1차 농축수와 1차 생산수를 제조하는 단계와 1차 농축수를 ED(이온교환막)에 통과시켜 고농도의 2차 농축수를 제조하는 단계를 포함한다.1 is an overall process diagram showing a method for producing mineral salts and mineral water in the electrolytic alkaline water of the present invention, Figure 2 is a membrane-free electrolysis device for generating electrolytic water for the production of electrolytic water and hydrogen ion concentration (pH) adjustment The schematic diagram of the is shown. In addition, the mineral water of the present invention is meant to include bottled water and various beverages, the method of producing mineral water of the present invention by passing the seawater (sea deep sea water) through the primary RO (reverse osmosis membrane) after pretreatment, the primary concentrated water and primary Preparing a production water and passing the first concentrated water through ED (ion exchange membrane) to produce a second concentrated water of high concentration.
본 발명의 전체 공정의 흐름은 해수 또는 해양심층수를 전처리(모래여과, 급속여과막, 마이크로필터(MF), 침지맴브레인필터(SMF), 울트라필터(UF) 등으로 여과)한 후, RO(역삼투막), NF-RO 막 (나노필터-역삼투 복합막), 전기투석막 (ED)을 통과시켜 농축수와 생산수를 제조하고 농축수를 그대로 전기분해하거나 ED(이온투석막) 또는 MVR (감압증기재압축 증발법)방법으로 농축수를 재농축시켜 고농도 농축수를 제조하고 전기분해하여 산성수와 알칼리수를 제조한다(도 1). The flow of the whole process of the present invention is pre-treatment of seawater or deep seawater (filtered by sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), ultra filter (UF), etc.), RO (reverse osmosis membrane) Concentrated and produced water by passing through NF-RO membrane (nano filter-reverse osmosis composite membrane), electrodialysis membrane (ED) and electrolyzed concentrated water as it is, ED (ion dialysis membrane) or MVR (reduced vapor recompression) The concentrated water is re-concentrated by the evaporation method to prepare a high-concentrated concentrated water and electrolyzed to prepare acidic and alkaline water (FIG. 1).
전해수 생성용 무격막 분해장치를 이용하여 농축수와 고농도 농축수를 전기분해하여 산성수와 알칼리수를 제조한다. 알칼리수 제조 시에 전류량 설정을 조정하여 알카리수의 pH을 조절하여 각 pH별로 칼슘과 마그네슘 성분 조정이 다른 미네랄 염을 생성제조 한다(도 2). Acid and alkaline water are prepared by electrolyzing concentrated water and concentrated water using a membrane-free decomposition device for producing electrolytic water. In the preparation of alkaline water, the current amount is adjusted to adjust the pH of the alkaline water to produce mineral salts having different calcium and magnesium components for each pH (FIG. 2).
표 1 전해장치의 전류량에 따른 알칼리수 수소이온농도(pH).
수소이온농도 (pH) 전류계 A-meter (mA)
pH=10 50 - 150
pH=11 160 - 200
pH=12 200 - 260
pH=13 > 260
Table 1 Alkaline hydrogen ion concentration (pH) according to the amount of current in the electrolytic device.
Hydrogen ion concentration (pH) Ammeter A-meter (mA)
pH = 10 50-150
pH = 11 160-200
pH = 12 200-260
pH = 13 > 260
도 3은 수소이온농도 조정 알칼리수에서 생성된 미네랄염을 분리하기 위한 침전분리조를 나타낸다. 해수 또는 해양심층수 농축수의 전기분해 알칼리수를 수소이온농도를 조절함으로서 각 pH별로 칼슘과 마그네슘의 성분 함량 조성이 다른 미네랄염을 생성 할 수 있으며 이를 침전조에 옮겨 생성된 미네랄염을 침전시켜 해수 또는 해양심층수 농축수와 분리하였다. Figure 3 shows a sedimentation separation tank for separating the mineral salts produced in the hydrogen ion concentration adjusted alkaline water. By controlling the hydrogen ion concentration of the electrolyzed alkaline water of seawater or deep seawater concentrated water, it is possible to produce mineral salts with different composition of calcium and magnesium content at each pH, and transfer them to the settling tank to precipitate the generated salts. Separated with deep water concentrate.
침전조의 용량은 약 100리터이며 원뿔형태이기 때문에 형성되는 미네랄염 침전물은 침전조의 원뿔 바닥에 모이게 되며 침전조의 원뿔 바닥에서 15 센티미터 상부에 상등액 제거 배출 장치를 이용하여 바닥에 침전된 미네랄염의 교란 없이 침전조의 상등 해수 또는 해양심층수 농축수와 분리하였다(도 3).Since the volume of the sedimentation tank is about 100 liters and is conical, the mineral salt precipitate formed is collected at the bottom of the conical bottom of the sedimentation tank. The sedimentation tank without disturbing the mineral salt deposited on the bottom by using the supernatant removal discharge device 15 cm above the conical bottom of the sedimentation tank. The seawater or the deep seawater was separated from the concentrated water (Fig. 3).
침전분리조에서 분리된 미네랄 침전물은 원심분리기를 이용하여 원심분리한 후 열풍건조기에서 건조 후 분말화하여 미네랄염을 제조하였다. pH별로 분리 건조된 미네랄염에는 pH 10 이하에서 마그네슘 : 칼슘 비가 0.01-0.4, pH 11에서는 마그네슘 : 칼슘 비가 0.4-1.8, pH 12에서는 마그네슘 : 칼슘 비가 1.8-3.8, pH 13 이상에서는 마그네슘 : 칼슘 비가 3.8 - 40.72로 칼슘과 마그네슘의 분리가 발생 한다. Mineral precipitates separated in the sedimentation tank were centrifuged using a centrifuge, dried in a hot air dryer, and then powdered to prepare mineral salts. For mineral salts dried by pH, magnesium: calcium ratio 0.01-0.4 at pH 10 or less, magnesium: calcium ratio 0.4-1.8 at pH 11, magnesium: calcium ratio 1.8-3.8 at pH 12, magnesium: calcium ratio at pH 13 and above The separation of calcium and magnesium occurs between 3.8 and 40.72.
이때의 미네랄염의 음이온은 대부분 탄산이온이나 수산화이온이기 때문에 먹는 물 수질기준 항목인 염소와 황산이온과 분리되어 진다. 상기와 같이 수소이온농도 (pH)에 따라 마그네슘과 칼슘 농도가 각각 다른 미네랄 염을 혼합 조정하여 마그네슘 대 칼슘의 농도비가 서로 다른 미네랄 염을 제조한다. At this time, the anions of mineral salts are mostly carbonate or hydroxide ions, so they are separated from chlorine and sulfate ions, which are water quality standards. As described above, mineral salts having different concentrations of magnesium to calcium are prepared by mixing and adjusting mineral salts having different magnesium and calcium concentrations according to hydrogen ion concentration (pH).
예를 들어 순도 90% 이상의 칼슘염, 마그네슘 대 칼슘 비가 0.1에서 50 범위의 미네랄 염, 마그네슘의 농도가 98% 이상인 마그네슘염 등을 제조한다. 상기와 같은 칼슘염, 칼슘/마그네슘 혼합염, 마그네슘염등을 혼합하여 미네랄 함량이 조정된 미네랄염을 구연산 분말, 비타민 분말, 과일추출물 분말, 녹차분말 등과 혼합하여 정제 (tablet)또는 분말포 형태로 제조한다. For example, a calcium salt having a purity of 90% or more, a mineral salt having a magnesium to calcium ratio in the range of 0.1 to 50, a magnesium salt having a magnesium concentration of 98% or more, and the like are prepared. Mix the calcium salts, calcium / magnesium mixed salts, magnesium salts, and the like with the mineral salts of which the mineral content is adjusted, and then mix it with citric acid powder, vitamin powder, fruit extract powder, green tea powder, etc. Manufacture.
표 2 해수 또는 해양심층수 미네랄염의 성분조성 (수온 20 ℃ 기준)
단위 pH = 10 pH = 11 pH = 12 pH = 13
Sodium (Na) % 1.20 1.61 0.86 1.09
Magnesium (Mg) % 9.24 21.02 26.75 30.68
Calcium (Ca) % 23.01 11.92 7.19 4.42
Potassium (K) % 0.12 0.11 0.05 0.09
Chloride (Cl) % 3.32 3.03 3.22 3.13
Sulphate (SO4 2-) % 1.63 1.53 1.52 1.62
Carbonate (CO3 2-) & Hydroxide (OH) % 61.48 60.79 60.42 58.92
TABLE 2 Composition of sea salt or deep sea mineral salt (based on water temperature of 20 ℃)
unit pH = 10 pH = 11 pH = 12 pH = 13
Sodium (Na) % 1.20 1.61 0.86 1.09
Magnesium (Mg) % 9.24 21.02 26.75 30.68
Calcium (Ca) % 23.01 11.92 7.19 4.42
Potassium (K) % 0.12 0.11 0.05 0.09
Chloride (Cl) % 3.32 3.03 3.22 3.13
Sulphate (SO 4 2- ) % 1.63 1.53 1.52 1.62
Carbonate (CO 3 2- ) & Hydroxide (OH) % 61.48 60.79 60.42 58.92
수소이온농도별로 제조된 칼슘염, 칼슘/마그네슘 혼합염, 마그네슘염등을 혼합하여 미네랄 함량이 조정된 미네랄염을 탈염수에 용해시켜 칼슘과 마그네슘의 조성이 조정된 경도 1200까지의 고경도 미네랄 생수를 제조한다. 이미 미네랄염 제조시에 나트륨이온, 보론이온, 염소이온, 황산 이온 등 먹는물 수질기준 항목의 이온들과 분리 제거되었기 때문에 이러한 미네랄염을 이용하여 제조된 고경도 미네랄 생수는 먹는물 관리법에서 규정한 먹는 물 수질기준을 만족하는 고경도 미네랄 생수을 제조한다. 상기 제조과정 중 탈염수와 함께 구연산, 오렌지추출물, 녹차추출물, 여러 식물 또는 과일 추출물 등을 첨가하여 미네랄이 보강된 미네랄 혼합 음료도 제조가능하다.By mixing calcium salt, calcium / magnesium mixed salt, magnesium salt, etc. prepared by hydrogen ion concentration, mineral salt with adjusted mineral content is dissolved in demineralized water to produce high hardness mineral water with hardness up to 1200 with calcium and magnesium composition adjusted. Manufacture. Since mineral salts have already been separated and removed from the ions of drinking water quality standards such as sodium ions, boron ions, chlorine ions, and sulfate ions when mineral salts are manufactured, the hard mineral mineral water prepared using these mineral salts is Manufacture hard mineral mineral water that meets drinking water quality standards. In addition to citric acid, orange extracts, green tea extracts, various plant or fruit extracts, and the like with demineralized water during the manufacturing process, mineral-enriched mineral mixed drinks can also be prepared.
표 3 수소이온 농도별 미네랄 염의 혼합에 따른 미네랄 함량이 조정된 미네랄염의 제조
  Mg Ca Mg/Ca
칼슘 미네랄 염 @pH=10 9.24 23.01 0.40
마그네슘 미네랄염 @pH=13 30.68 4.42 6.9
@pH10(23%) + @pH13(77%) 25.7 8.7 3.0
TABLE 3 Preparation of Mineral Salts with Adjusted Mineral Contents by Mixing Mineral Salts by Hydrogen Concentration
Mg Ca Mg / Ca
Calcium mineral salts @ pH = 10 9.24 23.01 0.40
Magnesium Mineral Salts @ pH = 13 30.68 4.42 6.9
@ pH10 (23%) + @ pH13 (77%) 25.7 8.7 3.0
본 발명의 전처리 과정 중 나노필터(NF), 울트라필터(UF)막을 이용하여 황산이온(SO4 2-)만 제거되고 나머지 염(나트륨, 마그네슘, 칼슘, 칼륨, 염소이온 등) 들은 투과된 생산수를 재차 역삼투막을 통해 여과하면 SO4 2-만 제거되고 나머지 염(나트륨, 칼륨, 칼슘, 마그네슘 등)들이 농축된 농축수를 제조하는 단계를 포함한다 In the pretreatment process of the present invention, only nano sulfate (NF) and ultra filter (UF) membranes are used to remove only sulfate ions (SO 4 2- ) and the remaining salts (sodium, magnesium, calcium, potassium, chlorine ions) are permeated. Filtration of the water through the reverse osmosis membrane comprises the steps of preparing a concentrated water in which only SO 4 2- is removed and the remaining salts (sodium, potassium, calcium, magnesium, etc.) are concentrated.
기존의 공정인 역삼투막 공정은 간단하기는 하지만 농축수의 농도가 낮고 또한 농축수 중의 황산이온 (SO4 2-)의 함유 등의 문제가 있으며, 이온교환막 공정 (ED)은 농축수의 농도를 역삼투막 공정에 비하여 높일 수 있으나 미네랄 분리와 같은 순도의 문제가 있었다. 이 둘의 문제점을 해결하고 생산수율을 높이기 위하여 나노필터막 (NF) - 역삼투막 (RO) - 전기투석막 (ED) 공정을 결합하여 고효율의 미네랄염 및 고경도 미네랄워터을 제조하는 단계를 포함한다. Although the conventional reverse osmosis membrane process is simple, the concentration of the concentrated water is low, and there are problems such as the inclusion of sulfate ion (SO 4 2- ) in the concentrated water, and the ion exchange membrane process (ED) uses the concentration of the reverse osmosis membrane. It can be higher than the process, but there were problems of purity such as mineral separation. In order to solve these two problems and increase the production yield, a process of manufacturing a high-efficiency mineral salt and high hardness mineral water is performed by combining a nano filter membrane (NF)-reverse osmosis membrane (RO)-electrodialysis membrane (ED) process.
도 4는 미네랄염 생성 수율 향상을 위한 NF-RO-ED 공정와 MVR-침전분리 공정을 결합한 공정도를 나타낸다. 1차 나노필터막을 통하여 황산이온이 제거된 생산수을 얻고, 2차 역삼투막 공정을 통해 고순도의 생산수 (탈염수)와 7% 이상의 황산이온이 제거된 농축수를 제조하고, 3차로 ED(이온교환막) 공정을 통해 (SO4 2-)가 제거된 14% 이상 고농도 농축수를 제조한다. 이 농축수를 MVR (감압증발증류방식) 방식을 통해 증발 결정화한 후 마그네슘이 고농도로 농축되어 있는 상등액을 분리 정제하여 미네랄 농축수를 (경도 100,000 이상) 제조한다. Figure 4 shows a process chart combining the NF-RO-ED process and MVR-precipitation separation process for improving the mineral salt production yield. Obtained the production water from which sulfate ions were removed through the primary nanofilter membrane, and producing high-purity production water (demineralized water) and concentrated water from which 7% or more sulfate ions were removed through the second reverse osmosis membrane process, and thirdly, ED (ion exchange membrane). The process produces a concentrated water of at least 14% with (SO 4 2- ) removed. The concentrated water is evaporated and crystallized through MVR (Decomposition Evaporation Distillation Method), and the purified supernatant with high concentration of magnesium is separated and purified to prepare mineral concentrated water (hardness of 100,000 or more).
또한 이온교환막 (ED) 공정을 통해 생산된 14-30%의 농축액을 전기분해하여 수소이온농도 (pH)을 조정하고 침전분리법을 통해 미네랄 성분 중 칼슘, 마그네슘 등을 분리 추출하는 방법으로 미네랄염을 선택적으로 분리하여 고순도의 미네랄 염 (칼슘염, 마그네슘염, 칼슘/마그네슘 성분비율 조정 미네랄염)을 제조하는 공정과 제조된 고순도 미네랄염을 탈염수에 혼합하여 미네랄 워터를 제조하는 공정을 포함한다.In addition, by adjusting the hydrogen ion concentration (pH) by electrolyzing 14-30% concentrated liquid produced through ion exchange membrane (ED) process and separating and extracting calcium, magnesium, etc. among mineral components through the precipitation separation method Selectively separating and preparing high-purity mineral salts (calcium salt, magnesium salt, calcium / magnesium component ratio adjusting mineral salt) and mixing the prepared high-purity mineral salt with demineralized water to prepare mineral water.
황산이온(SO4 2-)이 얼마나 포함되어 있는가의 여부와 염분제거, 그리고 칼륨, 칼슘, 마그네슘의 함량 균형 여부에 따라 제조된 물의 품질이 달려있다. NF 공정을 설치함으로써 황 성분이 획기적으로 감소된 고농축수를 미네랄 추출에 사용할 수 있었으며, 결정화 과정 중에 칼슘의 결정이 일부밖에 이루어지지 않고 미네랄농축수로 남는다는 것을 알 수 있다. 황산이온의 제거함으로서 결정화 과정 중 칼슘을 결정화시켜 다시 용해해야 하는 불편함이 없는 잇점이 있다. 또한 전기분해를 통한 침전분리 공정을 통해 미네랄 성분 조성 조정도 가능하여 칼륨, 칼슘과 마그네슘을 임의대로 조정할 수 있어서 용도에 적합한 미네랄 균형이 잡힌 미네랄염 제조가 가능하고 이러한 미네랄염을 이용하여 수질기준에 적합한 미네랄 워터의 제조가 가능하다. The quality of the water produced depends on how much sulfate ions (SO 4 2- ) are contained, the desalination and the balance of potassium, calcium and magnesium content. By installing the NF process, highly concentrated water with significantly reduced sulfur content could be used for mineral extraction, and it can be seen that only a part of calcium crystallization remains as mineral concentrated water during crystallization. Removal of sulfate ions has the advantage that there is no inconvenience to crystallize and re-dissolve calcium during the crystallization process. In addition, it is possible to adjust the mineral composition through the precipitation separation process through electrolysis, so that potassium, calcium and magnesium can be arbitrarily adjusted, making it possible to manufacture mineral salts with balanced minerals suitable for the purpose. Production of suitable mineral water is possible.
표 4 미네랄조정염을 이용한 고경도 미네랄 생수의 성분조성 및 수질기준 비교
구 분 성분 단위 본 발명에 의한 미네랄탈염수(경도 4,353기준) 기존방법에 의해 제조된 미네랄탈염수(경도 3,721기준) 본 발명에 의해 제조된 고경도 미네랄워터(경도 1,000기준) 먹는 해양심층수 수질기준
주성분원소 나트륨 (Na) mg/L 14 600 3.0 -
마그네슘 (Mg) mg/L 790 801 182 -
칼슘 (Ca) mg/L 440 167 101 -
칼륨 (K) mg/L N.D 160 N.D -
유해영향무기물질 질산염 (Nitrate) mg/L N.D N.D N.D 10
붕소 (B) mg/L 0.04 0.029 0.0203 1.0
비소 (As) mg/L 0.003 0.0002 0.001 0.05
납 (Pb) mg/L 0.002 0.0002 0.0003 0.05
세레늄 (Se) mg/L 0.03 - 0.008 0.01
수은 (Hg) mg/L N.D N.D N.D 0.001
크롬 (Cr) mg/L 0.003 0.0006 0.001 0.05
카드뮴 (Cd) mg/L 0.0002 0.0002 0.00004 0.005
바륨 (Ba) mg/L 0.007 - 0.002 -
스트론튬 mg/L 0.08 0.05 0.01 4.0 이하
심미영향물질 동 (Cu) mg/L 0.014 0.00023 0.003 1.00
수소이온농도 (pH) mg/L 7.5 - 7.5 5.8-8.5
아연 (Zn) mg/L 0.055 0.004 0.013 1.00
철 (Fe) mg/L 0.015 0.0073 0.003 0.30
망간 (Mn) mg/L 0.002 0.0002 0.001 0.30
알루미늄 (Al) mg/L 0.017 0.0002 0.004 0.20
염소이온 (Cl) mg/L 629 2630 145 250
황산이온 (SO4 2-) mg/L 107 1598 25 250
경도 (Hardness) mg/L 4,353 3,721 1,000 1,200
유해영향유기물질 휘발성 성분 mg/L N.D N.D N.D N.D
농약성분 mg/L N.D N.D N.D N.D
미생물 일반세균 mg/L N.D N.D N.D N.D
총대장균 mg/L N.D N.D N.D N.D
Table 4 Composition and Comparison of Water Quality Standards of Hardened Mineral Water Using Mineral-Adjusted Salts
division ingredient unit Mineral demineralized water according to the present invention (based on hardness 4,353) Mineral demineralized water prepared by the existing method (based on hardness 3,721) High hardness mineral water produced by the present invention (based on 1,000 hardness) Deep sea water quality standards to eat
Elemental ingredient Sodium (Na) mg / L 14 600 3.0 -
Magnesium (Mg) mg / L 790 801 182 -
Calcium (Ca) mg / L 440 167 101 -
Potassium (K) mg / L ND 160 ND -
Hazardous Effects Nitrate mg / L ND ND ND 10
Boron (B) mg / L 0.04 0.029 0.0203 1.0
Arsenic (As) mg / L 0.003 0.0002 0.001 0.05
Lead (Pb) mg / L 0.002 0.0002 0.0003 0.05
Selenium (Se) mg / L 0.03 - 0.008 0.01
Mercury (Hg) mg / L ND ND ND 0.001
Chromium (Cr) mg / L 0.003 0.0006 0.001 0.05
Cadmium (Cd) mg / L 0.0002 0.0002 0.00004 0.005
Barium (Ba) mg / L 0.007 - 0.002 -
strontium mg / L 0.08 0.05 0.01 4.0 or less
Aesthetically Affecting Substances Copper (Cu) mg / L 0.014 0.00023 0.003 1.00
Hydrogen ion concentration (pH) mg / L 7.5 - 7.5 5.8-8.5
Zinc (Zn) mg / L 0.055 0.004 0.013 1.00
Iron (Fe) mg / L 0.015 0.0073 0.003 0.30
Manganese (Mn) mg / L 0.002 0.0002 0.001 0.30
Aluminum (Al) mg / L 0.017 0.0002 0.004 0.20
Chlorine Ion (Cl) mg / L 629 2630 145 250
Sulfate Ion (SO 4 2- ) mg / L 107 1598 25 250
Hardness mg / L 4,353 3,721 1,000 1,200
Hazardous Effects Organic Materials Volatile components mg / L ND ND ND ND
Pesticide Ingredients mg / L ND ND ND ND
microbe General bacteria mg / L ND ND ND ND
Coliform mg / L ND ND ND ND
N.D (not detected) : 검출안됨N.D (not detected): Not detected
본 발명의 미네랄염과 미네랄 워터의 제조 방법은 2차 농축수를 전기분해한 후 침전분리 시스템을 이용하여 미네랄 (칼슘, 마그네슘, 칼륨) 성분을 조정하고 결정화시켜 미네랄염을 제조하는 단계를 포함한다. 기존의 증발 농축을 수행하는 방법에는 열에너지를 직접 가하여 증발하는 방식(평부식)과 스팀 등을 발생시켜 이를 활용하여 간접 증발시키는 방법과 스팀을 이용하여 간접 증발하는 방식인 MVR(Mechanical Vapor Recompressor) 방식을 통해 에너지 효율을 극대화하는 방법이 있다. 농축수를 증발농축하여 미네랄염을 제조하는 데는 평부식이 10,750,000kcal, 증기 이용식이 5,750,000kcal, 다단 진공식이 1,380,000kcal, MVR방식이 500,000kcal의 에너지를 사용한다. The method for preparing the mineral salt and the mineral water of the present invention includes preparing a mineral salt by electrolyzing the secondary concentrated water and adjusting and crystallizing the mineral (calcium, magnesium, potassium) component using a precipitation separation system. . Existing evaporative concentration methods include direct evaporation (flat type) by generating direct thermal energy and indirect evaporation using steam, and indirect evaporation using steam (Mechanical Vapor Recompressor) method. There is a way to maximize energy efficiency. In order to prepare mineral salts by evaporating concentrated water, energy of 10,750,000kcal of flat type, 5,750,000kcal of steam type, 1,380,000kcal of multistage vacuum type and 500,000kcal of MVR method is used.
MVR 방식은 증기투입 - 증발농축에 사용 - 기계적 재압축(온도 상승) - 증발 농축에 사용 - 기계적 재압축(온도상승) - 증발 농축에 사용하는 방식으로 초기 투입 증기를 약간의 전기를 이용하여 재 압축을 통해 온도를 상승 재사용함으로써 저렴한 에너지 비용으로 거의 무한 반복 사용이 가능하다.MVR method is used for steam input-evaporative concentration-mechanical recompression (temperature rise)-evaporative concentration-mechanical recompression (temperature rise)-evaporative concentration. By re-compressing the temperature through compression, almost infinite repetition is possible at low energy costs.
그러나 전기분해 방식 침전분리 공정에서 소요되는 에너지는 전기분해시 소요되는 전력이 약 1.0 kw이므로 이를 에너지 단위로 환산하면 1,700 kcal 가 소모된다. 현존 최소의 에너지가 소요된다고 평가되는 MVR 방식에 비하여 전기분해 침전분리법을 적용함으로서 미네랄염을 제조하는 공정 중 소요되는 에너지를 획기적으로 절감할 수 있다.However, the energy consumed in the electrolysis sedimentation process consumes about 1.0 kw, which translates into 1,700 kcal. Compared to the MVR method which is estimated to require the minimum energy, the electrolytic sedimentation method can be used to drastically reduce the energy required during the mineral salt manufacturing process.
이하, 본 발명의 각 공정의 실시예를 설명한다. Hereinafter, the Example of each process of this invention is described.
실시예 1: 전기분해 공정을 통한 수소이온농도 (pH) 조정Example 1 Adjusting Hydrogen Concentration (pH) Through an Electrolysis Process
전해수 생성 장치는 전해수 생성을 위한 컨트롤 판넬과 전해수 생성 무격막 전기분해조, 해수 및 농축수 공급 라인과 순환펌프, 알카리수 및 산성수 생성 수조, 강알리성과 강산성수 배출 라인, 수조의 수위센서 등으로 이루어져 있다. 도 5는 전해수 생성용 무격막 전해 분해장치 및 각부구조를 나타낸다. The electrolyzed water generator consists of a control panel for electrolyzed water generation, electrolyzed water generating diaphragm electrolysis tank, seawater and concentrated water supply line, circulation pump, alkaline and acidic water generating tank, strong aliphatic and strong acidic water discharge line, and water level sensor of the tank. have. Figure 5 shows a membrane-free electrolytic decomposition device and each structure of the electrolytic water generation.
전해장치에서 강알칼리를 요구할수록 최저수위센서를 많이 올려주는 것이 좋다. 장치에서 pH 13 이상을 요구할 경우 전류계의 값이 260 mA 이상이 되어야 생성될 수 있다. 그러나 최저수위가 너무 낮으면 운행세팅 시간작동 후 버려지는 배출수의 양이 많아져서 전류계 값을 높이는데 많은 시간이 요구된다. 반대로 최저수위센서가 너무 높게 위치하면 버려지는 양의 물이 적으므로 보충수 양도 적어 무격막에서 염소이온을 뺏어오는 양이 적어 pH 값이 오히려 떨어질 수 있다. 전류량에 따라 다음과 같이 수소이온농도 (pH) 값을 조정할 수 있다. It is better to raise the minimum water level sensor when the electrolytic device requires strong alkali. If the device requires a pH above 13, the ammeter must be at least 260 mA before it can be produced. However, if the minimum water level is too low, the amount of waste water discarded after the operation setting time will be large, and much time is required to increase the ammeter value. On the contrary, if the minimum water level sensor is placed too high, the amount of water discarded is small, so the amount of supplemental water is small, and the amount of chlorine ions taken from the septum may be less and the pH value may be lowered. The pH value can be adjusted according to the amount of current as follows.
전해장치 작동시간을 30분, 정량펌프 유입되는 시간 간격을 10분으로 세팅하면 장치는 30분 작동 후 아크릴 수조에 물이 최저수위까지 배출되고 최고수위까지 물이 보충 후 작동 된다. 정량펌프는 30분 동안에 3회 작동되고 1회에 알칼리 수 생성량은 400 ml 정도 생성된다. If you set the operation time of the electrolyzer to 30 minutes and the time interval for entering the metering pump to 10 minutes, the device operates after 30 minutes of operation. The metering pump is operated three times in 30 minutes and produces about 400 ml of alkaline water at one time.
실시예 2: 침전조를 이용한 미네랄염 분리 Example 2: Separation of Mineral Salts Using Precipitation Tank
해수 또는 해양심층수 농축수의 전기분해 알카리수를 수소이온농도를 조절함으로서 각 pH별로 칼슘과 마그네슘의 성분 함량 조성이 다른 미네랄염을 생성 할 수 있으며 이를 침전조에 옮겨 생성된 미네랄염을 침전시켜 해수 또는 해양심층수 농축수와 분리하였다. 침전조의 용량은 약 100리터이며 상부는 원통형태이고 하부는 원뿔형태이기 때문에 형성되는 미네랄염 침전물은 침전조의 원뿔 바닥에 모이게 되며 침전조의 원뿔 바닥에서 중간 상부에 상등액 제거 배출 장치를 이용하여 바닥에 침전된 미네랄염의 교란 없이 침전조의 상등 해수 또는 해양심층수 농축수와 분리한다. By controlling the hydrogen ion concentration of the electrolyzed alkaline water of seawater or deep sea water concentrated water, it is possible to produce mineral salts with different composition of calcium and magnesium content at each pH, which is then transferred to the settling tank to precipitate the generated salts. Separated with deep water concentrate. The volume of the sedimentation tank is about 100 liters, and the upper part is cylindrical and the lower part is conical. The mineral salt precipitates are collected at the bottom of the conical bottom of the sedimentation tank. Separate from the concentrated seawater or the deep seawater of the sedimentation tank without disturbing the mineral salts.
특히 침전조의 하부 원뿔형태의 중간에 역 U자 형태의 튜브를 설치하고 그 밑에 상등액 배출구에 연결시킴으로서, 상등액 배출구의 콕을 열면 역 U자 관 튜브 입구까지 상등액이 배출된다. 역 U자관의 높이를 조절함으로서 침전물의 양에 따라 상등액 분리 깊이까지 조절이 가능하다. 또한 침전조 외부에 stirrer를 설치할 수 있는 봉을 제작함으로서 stirrer을 이용하여 침전조안에서 미네랄 염의 반응이 잘 일어날 수 있도록 시스템을 제작한다. 최종적으로 생성된 미네랄 염은 침전조의 원뿔 바닥에 모이게 되고 이를 침전조 배출구을 통하여 간단하게 회수 할 수 있다. 도 3은 수소이온농도 조정 알카리수에서 생성된 미네랄염을 분리하기 위한 침전분리조를 나타낸다. In particular, by installing an inverted U-shaped tube in the middle of the lower cone of the sedimentation tank and connecting it to the supernatant outlet, the supernatant is discharged to the inlet of the inverted U-tube tube by opening the cock of the supernatant outlet. By adjusting the height of the inverted U tube, it is possible to adjust the depth of the supernatant according to the amount of sediment. In addition, by making a rod to install the stirrer outside the sedimentation tank, the system is manufactured so that the reaction of the mineral salt in the sedimentation tank can be easily performed using the stirrer. The resulting mineral salts collect at the bottom of the conical bottom of the sedimentation tank and can be easily recovered through the sedimentation outlet. Figure 3 shows a sedimentation separation tank for separating the mineral salt produced in the hydrogen ion concentration adjusted alkaline water.
실시예 3: 수소이온농도 (pH) 별 미네랄 염의 성분조성Example 3: Composition of Mineral Salts by pH (pH)
침전분리조에서 분리된 미네랄 침전물은 원심분리기를 이용하여 원심분리한 후 열풍건조기에서 건조 후 분말화하여 미네랄염을 제조하였다. pH 10에서 생성되어 분리 건조된 미네랄염에는 마그네슘이 9.24 %, 칼슘이 23.1 %으로 마그네슘/칼슘 비가 0.4로서 형성된 미네랄 중에 대부분이 칼슘이었다. pH 11에서는 형성된 미네랄 염에는 마그네슘이 21%, 칼슘이 12% 로 구성되어 마그네슘/칼슘 비가 2.0으로 구성되었다. pH 12에서 형성된 미네랄염에는 마그네슘이 26.7%, 칼슘이 7.2 %로 마그네슘:칼슘 비가 3.7로 구성되었다. pH 13에서는 형성된 미네랄염에는 마그네슘이 30.7 %, 칼슘이 4.4%로, 마그네슘:칼슘 비가 7.0로 칼슘과 마그네슘의 분리가 발생 하여 전체 양이온 미네랄 중 마그네슘이 82%을 차지하고 있다. Mineral precipitates separated in the sedimentation tank were centrifuged using a centrifuge, dried in a hot air dryer, and then powdered to prepare mineral salts. The mineral salt produced and separated and dried at pH 10 was 9.24% of magnesium and 23.1% of calcium. Most of the minerals formed as magnesium / calcium ratio 0.4 were calcium. At pH 11, the mineral salt formed consisted of 21% magnesium and 12% calcium, with a magnesium / calcium ratio of 2.0. Mineral salts formed at pH 12 consisted of 26.7% magnesium and 7.2% calcium, with a magnesium: calcium ratio of 3.7. At pH 13, the mineral salt formed was 30.7% magnesium, 4.4% calcium, and the magnesium: calcium ratio was 7.0, resulting in the separation of calcium and magnesium, accounting for 82% of the total cationic minerals.
수소이온농도 조정에 따라 형성된 미네랄염에서 pH에 따른 마그네슘과 칼슘의 농도 변화를 도 6에 도시하였다. 마그네슘은 수소이온농도가 10에서 13으로 높아질수록 농도가 증가한 반면, 칼슘의 농도는 감소하였다. 따라서 알카리수의 수소이온농도 (pH)을 조정함으로서 생산되는 미네랄염 중 마그네슘과 칼슘의 비를 조정할 수 있었다. 생산되는 미네랄염을 Multi purpose X-ray Diffractometer (MP-XRD)로 미네랄 광물 결정을 분석하였다. 분석 조건은 X-ray power가 45 KV/30mA이며, Scan Mode는 θ/2θ이고, scan range는 10~100 deg (2θ) 이었다. 형성된 광물 결정 대부분은 탄산칼슘, 수산화마그네슘 및 수산화칼슘 형태이기 때문에 먹는 물 수질기준 항목인 염소이온과 황산이온과 대부분 분리되어진 결정형태이다 (도 8). The concentration change of magnesium and calcium according to pH in the mineral salt formed by adjusting the hydrogen ion concentration is shown in FIG. 6. Magnesium increased with increasing hydrogen ion concentration from 10 to 13, while calcium concentration decreased. Therefore, by adjusting the hydrogen ion concentration (pH) of the alkali water it was possible to adjust the ratio of magnesium and calcium in the mineral salt produced. The mineral salts produced were analyzed for mineral mineral crystals using a Multi purpose X-ray Diffractometer (MP-XRD). The analysis conditions were X-ray power of 45 KV / 30mA, Scan Mode of θ / 2θ, and Scan range of 10-100 deg (2θ). Since most of the mineral crystals formed are in the form of calcium carbonate, magnesium hydroxide and calcium hydroxide, they are mostly separated from chlorine and sulfate ions, which are water quality standards for drinking water (FIG. 8).
결과적으로 pH별로 미네랄 염의 구성 성분 중 염소이온의 농도는 3% 대이며, 황산이온의 농도는 1% 대로 구성되어 있다. 따라서 수소이온농도에 따른 미네랄 함량 조정 미네랄염을 이용하여 먹는샘물을 제조할 경우, 염소이온과 황산이온이 제거되었기 때문에 먹는물 수질기준을 충족하면서 고경도수의 제조가 가능하였다. 도 7은 수소이온농도 조정에 따라 형성된 미네랄염의 XRD Spectrum (@pH=10)을 나타낸다.As a result, the concentration of chlorine ions in the constituents of the mineral salts is 3%, and the concentration of sulfate ions is 1%. Therefore, when preparing drinking spring water by using mineral salts adjusted with mineral content according to the hydrogen ion concentration, chlorine and sulfate ions were removed, and thus high hardness water was produced while meeting drinking water quality standards. Figure 7 shows the XRD Spectrum (@pH = 10) of the mineral salt formed by adjusting the hydrogen ion concentration.
실시예 4: 칼슘과 마그네슘 성분 조정을 통한 미네랄 염 분말 및 정제 제조Example 4 Preparation of Mineral Salt Powder and Tablets by Adjusting Calcium and Magnesium Components
상기와 같이 수소이온농도 (pH)에 따라 마그네슘과 칼슘 농도가 각각 다른 미네랄 염을 혼합 조정하여 마그네슘 대 칼슘의 농도비를 조정한 미네랄 염을 제조하였다. 예를 들어 수소이온농도 (pH) 10에서 형성되는 Mg/Ca 비가 0.40인 칼슘이 주성분인 칼슘 미네랄염 23%와 수소이온농도 (pH) 13에서 형성되는 Mg/Ca 비가 6.9인 마그네슘이 주성분인 마그네슘 미네랄염 77%을 혼합하여 마그네슘 함량이 25.7%이고 칼슘 함량이 8.7%이며 Mg/Ca비가 3.0인 미네랄 염 제조가 가능하였다. As described above, the mineral salts having different magnesium and calcium concentrations were mixed and adjusted according to hydrogen ion concentration (pH) to prepare mineral salts in which the concentration ratio of magnesium to calcium was adjusted. For example, magnesium having a Mg / Ca ratio of 0.40 formed at a hydrogen ion concentration (pH) of 10 and a calcium calcium salt of 23% as a main component and magnesium having a Mg / Ca ratio of 6.9 at a hydrogen ion concentration (pH) of 13 are magnesium By mixing 77% of the mineral salts, it was possible to prepare a mineral salt having a magnesium content of 25.7%, a calcium content of 8.7%, and a Mg / Ca ratio of 3.0.
또한, 상기와 같은 칼슘 미네랄염, 칼슘/마그네슘 혼합 미네랄염, 마그네슘 미네랄염등을 혼합하여 미네랄 함량이 조정된 미네랄염을 구연산 분말, 비타민 분말, 과일추출물 분말, 녹차분말 등과 혼합하여 정제 (tablet) 또는 분말포로 제조가 가능하였다. In addition, by mixing the above-described calcium mineral salts, calcium / magnesium mixed mineral salts, magnesium mineral salts and the like, the mineral salts with the mineral content adjusted are mixed with citric acid powder, vitamin powder, fruit extract powder, green tea powder and the like (tablet) Or it could be manufactured in powder fabric.
실시예 5: 미네랄염을 이용한 고경도 미네랄워터 제조 Example 5: Preparation of high hardness mineral water using mineral salt
수소이온농도별로 제조된 칼슘염, 칼슘/마그네슘 혼합염, 마그네슘염등을 혼합하여 Mg/Ca 비가 2.0으로 조정된 미네랄 함량 조정 미네랄염 10.0 gram을 1 리터 탈염수 (경도 80)에 용해시켜 조정된 경도 4,350까지의 미네날탈염수를 제조하였다. 이를 다시 2 리터 탈염수로 희석하여 고경도 미네랄 생수 3리터를 제조한다. 이미 미네랄염 제조시에 스트론튬, 보론이온, 염소이온, 황산 이온 등 먹는물 수질기준 항목의 이온들과 분리 제거되었기 때문에 이러한 미네랄염을 탈염수에 용해하여 제조된 고경도 미네랄 생수는 경도 1,000 이상까지 먹는물 관리법에서 규정한 먹는 물수질 기준을 만족한다. 먹는 물 수질기준에 대해서는 표 4에 나타내었다.Adjusted mineral content by adjusting Mg / Ca ratio to 2.0 by mixing calcium salts, calcium / magnesium mixed salts and magnesium salts prepared for each hydrogen ion concentration. 10.0 grams of mineral salts were dissolved in 1 liter of demineralized water (hardness 80). Up to 4,350 demineralized brine was prepared. This is again diluted with 2 liter demineralized water to produce 3 liters of hard mineral mineral water. Since the mineral salts have already been separated and removed from the ions of drinking water quality standards such as strontium, boron ions, chlorine ions, and sulfate ions when the mineral salts are manufactured, the hard mineral mineral water prepared by dissolving these mineral salts in demineralized water is eaten up to a hardness of 1,000 or more. It satisfies the water quality standards prescribed by the Water Management Act. Drinking water quality standards are shown in Table 4.
상기 제조과정 중 탈염수와 함께 구연산, 오렌지추출물, 녹차추출물, 여러 식물 또는 과일 추출물 등을 첨가하여 미네랄이 보강된 미네랄 혼합음료 제조도 가능하다. In addition to citric acid, orange extract, green tea extract, various plant or fruit extracts and the like with demineralized water during the manufacturing process, it is also possible to manufacture mineral-enriched drinks.
해수 또는 해양심층수로부터 순도가 높은 미네랄 칼슘염과 마그네슘 염을 저비용의 에너지로 분리 추출 가능하고, 미네랄염과 염소이온과 황산이온을 분리함으로서 먹는물 수질기준에 적합한 고경도 미네랄음료의 제조가 가능하며, 칼슘과 마그네슘과 같은 유용 미네랄을 포함하는 다양한 제품의 미네랄원료를 해수에서 효율적으로 생산하는 것이 가능하여, 음료 및 미네랄을 원료로 하는 관련 산업의 부가가치 창출이 이루어질 수 있다. It is possible to separate and extract high purity mineral calcium salt and magnesium salt from seawater or deep sea water with low cost energy, and to prepare high hardness mineral drink suitable for drinking water quality standards by separating mineral salt, chlorine ion and sulfate ion. In addition, it is possible to efficiently produce mineral raw materials of various products including useful minerals such as calcium and magnesium in seawater, thereby creating added value of related industries based on beverages and minerals.

Claims (14)

  1. a) 해수 또는 해양심층수를 전처리한 후, 1차 처리하여 농축수와 생산수로 제조하는 단계; a) pretreatment of seawater or deep seawater, followed by primary treatment to produce concentrated water and produced water;
    b) 상기 농축수를 전기분해하여 산성수와 수소이온농도(pH) 10 에서 13 사이의 알칼리수를 제조하는 단계; b) electrolyzing the concentrated water to prepare alkaline water and alkaline water between 10 and 13 in pH;
    c) 상기 수소이온농도 10 에서 13사이의 알칼리수를 침전조에서 pH별로 칼슘염, 마그네슘염 침전물을 생산하여 침전 분리하는 단계;c) precipitating and separating the alkaline water having a hydrogen ion concentration of 10 to 13 by precipitation of calcium salt and magnesium salt for each pH in a precipitation tank;
    d) 상기 분리된 칼슘염과 마그네슘염을 일정비율로 혼합하여 칼슘과 마그네슘이 조정된 유용 미네랄 염으로 제조하는 단계; d) mixing the separated calcium salt and magnesium salt in a predetermined ratio to prepare a useful mineral salt in which calcium and magnesium are adjusted;
    e) 상기 a) 단계의 생산수에 상기 d) 단계의 유용 미네랄염을 용해시켜 마그네슘염과 칼슘염의 성분이 조정된 것을 특징으로 하는 미네랄 음료의 제조 방법e) a method of producing a mineral beverage, wherein the components of magnesium salt and calcium salt are adjusted by dissolving the useful mineral salt of step d) in the production water of step a).
  2. 제1항에 있어서, a) 단계의 1차 처리는 역삼투막 (RO)처리공정, 전기투석막 처리공정, NF-RO막 처리공정 중에서 선택되는 어느 하나 이상의 방법을 사용하는 것을 특징으로 하는 미네랄 음료의 제조방법The method of claim 1, wherein the primary treatment of step a) is a reverse osmosis membrane (RO) treatment step, electrodialysis membrane treatment step, NF-RO membrane treatment process using any one or more methods selected from the manufacturing process of mineral drink Way
  3. 제1항에 있어서 a) 단계의 전처리는 모래여과, 급속여과막, 마이크로필터(MF), 침지맴브레인필터(SMF), 울트라필터(UF) 중에서 선택되는 어느 하나 이상의 방법을 사용하는 것을 특징으로 하는 미네랄 음료의 제조방법The method of claim 1, wherein the pretreatment of step a) uses any one or more methods selected from sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), and ultra filter (UF). How to prepare drinks
  4. 제1항에 있어서 b) 단계에서 전기분해로 제조되는 수소이온농도(pH) 10 에서 13 사이의 알칼리 수는 전류량을 조절하여 생산하는 것을 특징으로 하는 미네랄 음료의 제조방법 The method of claim 1, wherein the alkaline water having a pH of 10 to 13 prepared by electrolysis in step b) is produced by controlling the amount of current.
  5. 제4항에 있어서 전류량은 50-260 mA인 것을 특징으로 하는 미네랄 음료의 제조방법 The method of claim 4, wherein the amount of current is 50-260 mA.
  6. 제1항에 있어서, 상기 b) 단계의 전기분해에 사용되는 농축수는 해수 또는 해양심층수 원수, NF-RO 또는 NF-RO-ED을 이용한 농축수, 감압증발증류법에 의하여 생산된 미네랄농축수 중에서 선택되는 어느 하나 이상을 이용하는 것을 특징으로 하는 미네랄 음료의 제조방법 According to claim 1, wherein the concentrated water used for the electrolysis of step b) is from seawater or deep sea water, concentrated water using NF-RO or NF-RO-ED, mineral concentrate produced by vacuum evaporation Method for producing a mineral beverage, characterized in that using any one or more selected
  7. 제1항에 있어서, 상기 a)단계의 농축수 제조는 해수 또는 해양심층수를 전처리 후 역삼투막(RO)에 통과시켜 1차 농축수와 1차 생산수를 제조하는 단계; 1차 농축수를 다시 이온교환막(ED)에 통과시켜 고농도의 2차 농축수를 제조하는 것으로 이루어지는 것을 특징으로 하는 미네랄 음료의 제조방법 According to claim 1, wherein the concentrated water production of step a) after the pre-treatment of seawater or deep sea water through a reverse osmosis membrane (RO) to produce a primary concentrated water and primary production water; Method for producing a mineral beverage, characterized in that the first concentrated water again passed through the ion exchange membrane (ED) to produce a second concentrated concentrated water of high concentration
  8. 제1항에 있어서, 상기 a) 단계의 농축수는 나노필터 (NF), 울트라필터(UF) 막을 이용하여 전처리 과정을 거쳐 황산이온(SO4)만 제거하고 나머지 나트륨, 마그네슘, 칼슘, 칼륨, 염소이온이 투과된 생산수를 다시 역삼투막(RO)을 통해 여과하여 농축하는 것을 특징으로 하는 미네랄 음료의 제조방법The method of claim 1, wherein the concentrated water of step a) is subjected to pretreatment using a nanofilter (NF) or ultrafilter (UF) membrane to remove only sulfate ions (SO4) and to remove the remaining sodium, magnesium, calcium, potassium, chlorine. Method for producing a mineral beverage, characterized in that the ion permeated production water is again filtered through a reverse osmosis membrane (RO)
  9. 제1항에 있어서 상기 d) 단계의 일정비율은 마그네슘 / 칼슘 비가 0.01-40.72인 것을 특징으로 하는 미네랄 음료의 제조방법The method according to claim 1, wherein the constant ratio of step d) is a magnesium / calcium ratio of 0.01-40.72.
  10. a) 해수 또는 해양심층수를 전처리한 후, 1차 처리하여 농축수와 생산수로 제조하는 단계; a) pretreatment of seawater or deep seawater, followed by primary treatment to produce concentrated water and produced water;
    b) 상기 농축수를 전기분해하여 산성수와 수소이온농도(pH) 10 에서 13 사이의 알칼리수를 제조하는 단계; b) electrolyzing the concentrated water to prepare alkaline water and alkaline water between 10 and 13 in pH;
    c) 상기 수소이온농도 10 에서 13사이의 알칼리수를 침전조에서 pH별로 칼슘염, 마그네슘염 침전물을 생산하여 침전 분리하는 단계;c) precipitating and separating the alkaline water having a hydrogen ion concentration of 10 to 13 by precipitation of calcium salt and magnesium salt for each pH in a precipitation tank;
    d) 상기 분리된 칼슘염과 마그네슘염을 일정비율로 혼합하여 칼슘과 마그네슘이 조정된 유용 미네랄 염으로 제조하는 단계; d) mixing the separated calcium salt and magnesium salt in a predetermined ratio to prepare a useful mineral salt in which calcium and magnesium are adjusted;
    e) 상기 a) 단계의 생산수에 구연산, 식물 또는 과일 추출물 중에서 선택되는 하나 이상의 추출물과 d) 단계의 유용 미네랄 염을 용해시켜 마그네슘염과 칼슘염의 성분이 조정된 미네랄 음료의 제조방법e) a method of preparing a mineral beverage in which the magnesium salt and calcium salt components are adjusted by dissolving at least one extract selected from citric acid, plant or fruit extract and useful mineral salt of step d) in the production water of step a).
  11. 제1항 내지 제10항 중 어느 하나의 방법으로 제조된 미네랄 음료Mineral beverage prepared by the method of any one of claims 1 to 10
  12. a) 해수 또는 해양심층수를 모래여과, 급속여과막, 마이크로필터(MF), 침지맴브레인필터(SMF), 울트라필터(UF) 중에서 선택되는 어느 하나 이상의 방법으로 전처리하는 단계;a) pre-treating the seawater or deep sea water by any one or more methods selected from sand filtration, rapid filtration membrane, micro filter (MF), immersion membrane filter (SMF), and ultra filter (UF);
    b) 전 처리된 해수 또는 해양심층수를 역삼투막 (RO)처리공정, 전기투석막 처리공정, NF-RO막 처리공정 중에서 선택되는 어느 하나 이상의 방법을 사용하여 농축수와 생산수로 제조하는 단계; b) preparing pre-treated seawater or deep seawater into concentrated and produced water using any one or more methods selected from reverse osmosis membrane (RO) treatment, electrodialysis membrane treatment and NF-RO membrane treatment;
    c) 상기 농축수를 전기분해하여 산성수와 수소이온농도(pH) 10 에서 13 사이의 알칼리수로 제조하는 단계;c) electrolyzing the concentrated water to produce acidic water and alkaline water between 10 to 13 hydrogen ion concentration (pH);
    d) 산성수를 별도로 분리하는 단계로 이루어진 것을 특징으로 하는 살균 소독수 제조방법d) a method for producing sterilized sterilized water, characterized in that the step of separating the acidic water separately
  13. 제12항에 있어서 b) 단계의 전기분해시 사용되는 전류량은 50-260 mA인 것을 특징으로 하는 살균 소독수 제조방법The method according to claim 12, wherein the amount of current used in the electrolysis of step b) is 50-260 mA.
  14. 제12항 내지 제13항 중의 어느 하나의 방법으로 생산되는 것을 특징으로 하는 살균 소독수 Disinfectant sterilized water, which is produced by any one of claims 12 to 13.
PCT/KR2012/011424 2012-05-30 2012-12-26 Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage WO2013180368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015503096A JP5919432B2 (en) 2012-05-30 2012-12-26 Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120057337A KR101367477B1 (en) 2012-05-30 2012-05-30 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
KR10-2012-0057337 2012-05-30
KR1020120057345A KR101295445B1 (en) 2012-05-30 2012-05-30 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral purification
KR10-2012-0057345 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180368A1 true WO2013180368A1 (en) 2013-12-05

Family

ID=49673529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011424 WO2013180368A1 (en) 2012-05-30 2012-12-26 Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage

Country Status (2)

Country Link
JP (1) JP5919432B2 (en)
WO (1) WO2013180368A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787965A (en) * 2015-03-30 2015-07-22 湖州华鼎贸易有限公司 Treatment method of pharmaceutical industry wastewater
CN105174530A (en) * 2015-07-20 2015-12-23 湖州吉昌丝绸有限公司 Texture industry wastewater decoloring treatment method and novel compound decolorant
CN112811698A (en) * 2021-01-14 2021-05-18 清钰环保科技(上海)有限公司 Steel strong brine treatment process
WO2023143672A1 (en) * 2022-01-28 2023-08-03 Harry Hoffmann Method and device for recovering resources from seawater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014978A (en) * 2016-07-29 2018-02-01 室戸海洋深層水株式会社 As mineral component magnesium and calcium-containing soft drink
JP2019076827A (en) * 2017-10-24 2019-05-23 住友電気工業株式会社 Water treatment equipment and water treatment method
KR102036125B1 (en) * 2019-05-29 2019-10-24 송성은 Low-density Small Molecule Ionized Mineral Composition and Manufacturing Method Thereof
US20210308623A1 (en) * 2020-01-22 2021-10-07 Kenji SORIMACHI Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and carbon dioxide fixation apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200400448Y1 (en) * 2005-08-10 2005-11-08 한국수자원공사 A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR100751581B1 (en) * 2006-06-19 2007-08-22 (주)블루오션월드 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100850378B1 (en) * 2006-10-16 2008-08-04 서희동 A manufacturing method of alkaline reduced ionized water for drinking, from the deep sea water
KR100885175B1 (en) * 2008-08-05 2009-02-23 한국해양연구원 Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR100944538B1 (en) * 2009-12-30 2010-03-03 (주) 오씨아드 Method for producing high hardness mineral water containing mineral using sea water
KR100992428B1 (en) * 2009-08-17 2010-11-08 주식회사 파나블루 Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
KR101007332B1 (en) * 2008-11-21 2011-01-13 김충래 Preparation Method of High Concentrated Mineral Water Using Deep-Sea Water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607164B2 (en) * 1998-02-18 2011-01-05 赤穂化成株式会社 Beverage production method
JP2001299295A (en) * 2000-04-28 2001-10-30 Kyodo:Kk Mineral water and method for producing the same
JP2005087894A (en) * 2003-09-18 2005-04-07 Goshu Yakuhin Kk Hardness-regulated natural water
JP4031789B2 (en) * 2004-11-24 2008-01-09 高知県 Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
JP5062728B2 (en) * 2006-12-25 2012-10-31 室戸海洋深層水株式会社 Seawater treatment method and mineral water obtained by the seawater treatment method
KR100881584B1 (en) * 2007-04-12 2009-02-03 서희동 A method to produce electrolysis oxidation water and electrolysis reduction water from deep sea water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200400448Y1 (en) * 2005-08-10 2005-11-08 한국수자원공사 A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR100751581B1 (en) * 2006-06-19 2007-08-22 (주)블루오션월드 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100850378B1 (en) * 2006-10-16 2008-08-04 서희동 A manufacturing method of alkaline reduced ionized water for drinking, from the deep sea water
KR100885175B1 (en) * 2008-08-05 2009-02-23 한국해양연구원 Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR101007332B1 (en) * 2008-11-21 2011-01-13 김충래 Preparation Method of High Concentrated Mineral Water Using Deep-Sea Water
KR100992428B1 (en) * 2009-08-17 2010-11-08 주식회사 파나블루 Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
KR100944538B1 (en) * 2009-12-30 2010-03-03 (주) 오씨아드 Method for producing high hardness mineral water containing mineral using sea water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787965A (en) * 2015-03-30 2015-07-22 湖州华鼎贸易有限公司 Treatment method of pharmaceutical industry wastewater
CN105174530A (en) * 2015-07-20 2015-12-23 湖州吉昌丝绸有限公司 Texture industry wastewater decoloring treatment method and novel compound decolorant
CN112811698A (en) * 2021-01-14 2021-05-18 清钰环保科技(上海)有限公司 Steel strong brine treatment process
WO2023143672A1 (en) * 2022-01-28 2023-08-03 Harry Hoffmann Method and device for recovering resources from seawater

Also Published As

Publication number Publication date
JP5919432B2 (en) 2016-05-18
JP2015513899A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
WO2013180368A1 (en) Method for separating mineral salts including magnesium salt and calcium salt from electrolyzed alkaline seawater, and method for using same to manufacture mineral beverage
KR100732066B1 (en) Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization
KR100885175B1 (en) Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR100944538B1 (en) Method for producing high hardness mineral water containing mineral using sea water
KR101367477B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
KR101639848B1 (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
KR100868493B1 (en) Preparation method of mineral water and mineral salt from deep ocean water
KR100945682B1 (en) Method for producing mineral water from deep sea water with mineral component and anion exchange resin
US20200187536A1 (en) Table salts and the manufacturing methods and system
US20210114909A1 (en) Drinking strontium-rich mineral water prepared from salt-making distilled water, and method and system thereof
CN110526439A (en) A kind of reuse method and device of RO strong brine
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
KR100751581B1 (en) Method for producing mineral water from deep ocean water with active control of mineral balances
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
KR101153438B1 (en) Method for producing mineral salt by control of contents and sorts of deep seawater minerals
US20210114910A1 (en) Method and system for preparing drinking weak alkali water and strontium-rich electrolyte raw water from salt-making distilled water
US20040022898A1 (en) Method for preparing mineral-containing liquids, especially drinks
KR101295445B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral purification
KR20140010654A (en) Method for preparing mineral water with high hardness using deep sea water or saline groundwater
KR20120047488A (en) Preparation method of mineral solution using sea water
KR101574327B1 (en) (Method for Separation of High Purity Minerals from Magma Seawater
KR100899012B1 (en) Preparation method of magnesium, calcium and potassium mineral water from deep ocean water
TW201639794A (en) Method for electrolyzing sea water to produce mineral beverage and disinfecting water, and mineral beverage, and disinfecting water manufactured by the same
CN106006881A (en) Method and device for preparing bactericide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 24/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12877803

Country of ref document: EP

Kind code of ref document: A1